Chapter 3: Internet Protocol

A *simple* network layer protocol.

Services

- Connectionless
- Unreliable

Functions

- Routing
- Congestion control via packet discarding
- Fragmentation and reassembly at the destination

Relation to other Protocols

```
+-------+ +-------+ +-------+ +-------+
| Telnet | FTP | TFTP | ... | ... |
+-------+ +-------+ +-------+ +-------+
|       |       |       |       |       |
| TCP   | UDP | ... | ... |       |
+-------+ +-------+ +-------+ +-------+
|       |       |       |       |       |
+----------------------------------+
|     Internet Protocol & ICMP     |
+----------------------------------+
|                                 |
+--------------------------+
|     Local Network Protocol  |
+--------------------------+
```
IP Header

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|Version|  IHL  |Type of Service|          Total Length         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|Identification |Flags|      Fragment Offset    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|  Time to Live |    Protocol   |         Header Checksum       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|                       Source Address                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|                    Destination Address                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|                    Options                    |    Padding    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```

Example Internet Datagram Header

- **Version of IP**: 4
- **Length of Header in words**: Typically 5
- **Type of service options**: Precedence (3 bits) .. followed by the DTRC bits
 (Typically ignored!)
 - Minimize delay (telnet.. interactive stuff)
 - Maximize throughput (ftp data)
 - Maximize reliability (IGP, SNMP)
 - Minimize cost (NNTP)

- **Datagram length in bytes**: Maximum of 64K
- **Datagram id**: Typically incremented by 1 by each host.
 (Used in reassembly)

- **Fragmentation flags**: (Reserved, DF, MF)
- **Fragment offset**: In 8 byte units
- **Time to live**: Decremented by 1 at each hop
 - At 0 packet is discarded and sender notified (tracerte)
- **Protocol**: TCP, UDP, see IANA RFC for values
- **Checksum**: Header checksum.. 1’s complement of the one’s complement sum *(See RFC 1071)*.. Checksum error → discard datagram. Must be recalculated each time.

- **Source IP address**
- **Dest IP address**
- **Options**: Security and handling restriction, record route, time stamp, loose/strict source routing.
The checksum algorithm:

```c
int in_cksum(u_short *p, int n)
{
    register u_short answer;
    register long sum = 0;
    u_short odd_byte = 0;

    while( n > 1 )
        { sum += *p++; n -= 2; }

    /* mop up an odd byte, if necessary */
    if( n == 1 )
        {
            *(u_char *)&odd_byte = *(u_char *)p;
            sum += odd_byte;
        }

    sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
    sum += (sum >> 16); /* add carry */
    answer = ~sum; /* ones-complement, truncate*/
    return (answer);
}
```
Routing in IP

A hierarchical routing scheme is now in use:

Exterior Gateway Protocols (EGPs) (e.g. BGP) provide connectivity among different Autonomous Systems (AS)

Interior Gateway Protocols (IGPs) (e.g. OSPF) provide connectivity within an Autonomous System.

Static routing tables (Used for Host level routing)

Routing decisions made by edge routers and hosts

Router need not know the entire path
===> Routing function is to determine the next hop

Based on contents of routing table

(Dest IP) (Next Hop IP) (Netmask/Pfx Len) (Flags) (Intf)

If Packet Destination best matches a Table Destination, send to the the Next Hop specified in the table entry

Routing decisions are typically simple for a host:

If dest directly connected via LAN or Point to Point
 Send to Dest
else
 Send to default router.

Linux host routing table:

```
local/westall ==> netstat −nr
Kernel IP routing table
Destination     Gateway         Genmask         Flags   MSS Window  irtt Iface
130.127.48.113  0.0.0.0         255.255.255.255 UH       40 0          0 eth0
192.168.2.0     0.0.0.0         255.255.255.0   U        40 0          0 lec0
130.127.48.0    0.0.0.0         255.255.255.0   U        40 0          0 eth0
127.0.0.0       0.0.0.0         255.0.0.0       U        40 0          0 lo
0.0.0.0         130.127.48.1    0.0.0.0         UG       40 0          0 eth0
```

SUN host routing table:

```
Destination           Gateway           Flags  Ref   Use   Interface
−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−− −−−−− −−−−− −−−−−− −−−−−−−−−
localhost            localhost             UH       0   3840  lo0
130.127.48.0         jmw                   U        3  42289  le0
BASE−ADDRESS.MCAST.NET jmw                 U        3      0  le0
default              130.127.48.1          UG       0   2058
```
Routing table elements

- Destination host or network address (host bits = 0 => network address)
- IP address of next hop router or directly connected network
 Need this so that ARP can resolve mac address.
 Next hop must be directly attached.

Flags
- Interface specification... access to the output queue of the selected link driver.

Routing table lookup scheme

- Search for complete (network, host) match.
- Search for matching network address (may have to consider subnetworks).
- Search for a default router (Citron)
 If none found return "host unreachable".

Subnet addressing

- Now required for all hosts (RFC 950)
- Example of a typical class B subnet mask 255.255.255.0
 0 bits in the subnet mask identify the bits reserved for host id.
- Given IP address and subnet mask a host can tell if any other address is
 - a host on its own subnetwork
 - on a different subnet but on the same network
 - on a different network.

Advantage of subnetworking

- Provides for hierarchical routing
 External routers need know about only 130.127 to reach any system at CU
 Internal routers at Clemson know about 130.127.n
 - n = 1, 254 (total subnetworks possible)
 - n = 48 => Computer Science Dept.
Example in book (p. 44):

Host address is 140.252.1.1
Subnet mask is 255.255.255.0

IP address 140.252.4.5 is on same network but a different subnet
 Packet must be sent to the default router
 ARP can’t be used to obtain MAC address

IP address 140.252.1.22 is on the same network and subnet
 Packet doesn’t need to be sent to a router
 ARP can be used to obtain MAC address

IP address 192.43.235.6 is on the different network
 Packet must be sent to the default router

Exercises:
 What if 140.252.4.5 really is on the same ethernet
 What if 140.252.1.22 really isn’t on the same ethernet

 Subnet-directed broadcast includes subnet id and host of 255 (−1)
Example in book p.46 (multiple subnet masks)

Note that Sun has a different subnet mask associated with each interface

The other (non 140.152.13) residents of 140.252 view the systems slip, bsdi, and svr4 as residents of net 140.252.13

Residents of 140.252.1 must know (via routing tables) to send 140.252.13 traffic to 140.252.1.29 (normally only the default router for 140.252.1 will have a static definition of this route).

Residents of 140.252.n (n != 13 and n != 1) must have a default router on 140.252.n that has:
 An interface on 140.252.1 or
 Knows how to reach 140.252.1

Using the 255.255.255.0 subnet mask --- subnet 13 can have up to 254 hosts

By changing the subnet mask to 255.255.255.224
 Subnet 13 can be further subdivided into 6 networks (3 additional bits – but can’t use 0 and 7)
 Network ids are 32, 64, 92, 128, 160, 192
 Each subnet can have 30 hosts (5 bits)
 And sane routing can be employed.
 There is nothing special about the slip net --- it just as well be another ethernet with up 30 hosts.

Exercise: Suppose a netmask of 255.255.255.0 were used on net 13. How would routing tables have to differ to make everything work correctly..
Host commands used to manage interfaces and routing

The ifconfig command is used to

- Bind an link level interface to a network address
- Associate a netmask with an interface
- Display status of interfaces
- It is normally run at system boot time via /etc/rc.d scripts

```bash
===> /sbin/ifconfig -a
eth0      Link encap:Ethernet  HWaddr 00:B0:D0:E9:0F:5B
          inet addr:192.168.2.33  Bcast:192.168.2.63  Mask:255.255.255.224
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:4771 errors:0 dropped:0 overruns:0 frame:0
          TX packets:22017 errors:0 dropped:0 overruns:0 carrier:0
          collisions:2814 txqueuelen:100
          Interrupt:16 Base address:0xec80

lec0      Link encap:Ethernet  HWaddr 00:00:77:8E:6D:B9
          inet addr:192.168.2.8  Bcast:192.168.2.255  Mask:255.255.255.224
          UP BROADCAST RUNNING MULTICAST  MTU:1492  Metric:1
          RX packets:61704714 errors:0 dropped:0 overruns:0 frame:0
          TX packets:32632157 errors:0 dropped:61 overruns:0 carrier:0
          collisions:0 txqueuelen:100

lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:987 errors:0 dropped:0 overruns:0 frame:0
          TX packets:987 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
```

The route command can be used to

- Add new routes
- Delete existing routes
- Display the current routing table

```bash
/sbin/ifconfig eth1 node1 up mtu $1 broadcast 10.1.255.255 netmask 255.255.0.0
```

The netstat command can also be used to display

- Interface information (`-i`) and
- Routing table information (`-r`)

Exercises: Run ifconfig and netstat on your favorite system and determine what information is provided.

Exercises: 3.2, 3.3, 3.4