Chapter 17 – TCP Introduction

TCP (Transmission Control Protocol)

A reliable, connection oriented transport protocol (c.f. UDP) an unreliable connection–less transport protocol

From an application point of view TCP provides a reliable byte pipe.

The pipe can be read or written in units of virtually any amount reliably.
It is impossible for the receiver to dynamically determine the size of the writes

TCP and the OS cooperate to synchronize the sender and receiver

Receiver process blocks when no data exists to be read
Sender process blocks when "too much" data gets in the system.

Connection oriented service

Like phone service..
You must explicitly request a connection.
All connections are two party (no broadcast or multicast)

Overview of TCP functionality

UDP creates a single IP datagram for each write or sendto
TCP dynamically decides how much data to pack into an IP datagram.
This size is called the segment size.

TCP maintains a timer for each outstanding segment.
If the segment times out, it is retransmitted
The timer setting is adaptive.

ACK’s are sent shortly after receipt of a segment.
Incoming packets with checksum errors are simply discarded (no NAKs)

TCP resequences incoming segments if necessary.

TCP detects and discards duplicated data.

TCP provides flow control that permits a slow receiver to constrain the rate at which a fast sender sends.
Objectives of TCP are the same as those of a reliable datalink protocol

Provide a virtual channel that is error free on
A physical channel that is unreliable

Construction of a reliable transport on IP is more complicated than a reliable datalink protocol because of three problems

<table>
<thead>
<tr>
<th></th>
<th>IP</th>
<th>Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service order</td>
<td>Not guaranteed</td>
<td>FIFO</td>
</tr>
<tr>
<td>Latency</td>
<td>Variable</td>
<td>Fixed</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Variable</td>
<td>Fixed</td>
</tr>
</tbody>
</table>

TCP Header

Follows the IP Header in a datagram
IP header – 20 bytes normally
TCP header – 20 bytes normally

![TCP Header Format]
Port numbers – As in UDP each packet has send and receive is associated with a logical TSAP address. A TCP connection is uniquely defined by a \{(source-IP, source-port), (dest-IP, dest-port)\}

Sequence number – The sequence number associated with the first byte in this packet \(\Rightarrow\) sequence numbers jump by packet size .. not by 1.

Ack number – The number of the next byte that the sender expects to receive on this connection \(= 1 + \) the sequence number of the last byte received correctly and in sequence.

Flags
- URG – The urgent pointer is valid
- ACK – The ack number is valid
- PSH – The receiver should push this data to the app ASAP
- RST – Reset (terminate) the connection
- SYN – Initiate a connection
- FIN – Normal termination of a connection

Window size – Other end is free to send new data with seq #'s between ack# and ack# + window

Urgent – Offset of the last byte of urgent data

Options – MSS is the most common.
Currently defined options include (kind indicated in octal):

<table>
<thead>
<tr>
<th>Kind</th>
<th>Length</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>End of option list.</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>No-Operation.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Maximum Segment Size.</td>
</tr>
</tbody>
</table>

Specific Option Definitions

End of Option List

```
+--------+
| 00000000 |
+--------+
```

Kind=0
This option code indicates the end of the option list. This might not coincide with the end of the TCP header according to the Data Offset field. This is used at the end of all options, not the end of each option, and need only be used if the end of the options would not otherwise coincide with the end of the TCP header.

No-Operation

```
+----------+
|00000001|
+----------+
```

Kind=1

This option code may be used between options, for example, to align the beginning of a subsequent option on a word boundary. There is no guarantee that senders will use this option, so receivers must be prepared to process options even if they do not begin on a word boundary.

Maximum Segment Size

```
+--------------------+--------------------+--------------------+--------------------+
|00000010|00000100| max seg size |
+--------------------+--------------------+--------------------+
```

Kind=2 Length=4

Maximum Segment Size Option Data: 16 bits

If this option is present, then it communicates the maximum receive segment size at the TCP which sends this segment. This field must only be sent in the initial connection request (i.e., in segments with the SYN control bit set). If this option is not used, any segment size is allowed.