Functions

Rosen (6th Edition) 2.3

Definition of Function

Let A and B be sets.

• A function f from A to B is an assignment of exactly one element of B to each element of A.
• We write f(a) = b if b is the unique element of B assigned by the function, f, to the element of A.
• If f is a function from A to B, we write f : A → B.

Terminology

• If f is a function from A to B, we say that A is the domain of f and B is the codomain of f.
• If f(a) = b, we say that b is the image of a and a is a pre-image of b.
• The range of f is the set of all images of elements of A.
• Also, if f is a function from A to B, we say that f maps A to B.

Addition and Multiplication

• Let f₁ and f₂ be functions from A to R (real numbers).
• f₁ + f₂ is defined as (f₁ + f₂)(x) = f₁(x) + f₂(x).
• f₁ f₂ is defined as (f₁ f₂)(x) = f₁(x) f₂(x).
• (Two real valued functions with the same domain can be added and multiplied.)
• Example: f₁(x) = x²; f₂(x) = x + x²
 • (f₁ + f₂)(a) = a² + a + a² = 2a² + a
 • (f₁ f₂)(a) = (a²)(a + a²) = a³ + a⁴

Are f₁ + f₂ and f₁ f₂ Commutative?

Prove: (f₁ + f₂)(x) = (f₁ f₂)(x) where x ∈ R
Proof: Let x ∈ R be an arbitrary element in the domain of f₁ and f₂. Then (f₁ + f₂)(x) = f₁(x) + f₂(x) = f₁(x) + f₂(x) = (f₁ f₂)(x).

Prove: (f₁ f₂)(x) = (f₂ f₁)(x) where x ∈ R
Proof: Let x ∈ R be an arbitrary element in the domain of f₁ and f₂. Then (f₁ f₂)(x) = f₁(x) f₂(x) = f₂(x) f₁(x) = (f₂ f₁)(x).

Image

Let f be a function from the set A to the set B and let S be a subset of A.
The image of S is the subset of B that consists of the images of the elements of S. f(S) = {f(s) | s ∈ S}.

Example: S = {a₁, a₂}
Image of S = {b₁, b₂}
One-to-one function

A function f is said to be one-to-one, or injective, if and only if f(x) = f(y) implies that x=y for all x and y in the domain of f.

∀a₀,a₁ ∈ A
a₀ ≠ a₁ → f(a₀) ≠ f(a₁)

Let f:Z→Z, where f(x) = 2x

Prove that f is one-to-one

Proof: We must show that ∀ x₀, x₁ ∈ Z f(x₀) = f(x₁) → x₀ = x₁.

Consider arbitrary x₀ and x₁ that satisfy f(x₀) = f(x₁).
By the function’s definition we know that 2x₀ = 2x₁. Dividing both sides by 2, we get x₀ = x₁.
Therefore f is one-to-one.

Define g(a,b) = (a-b, a+b)

Prove that g is one-to-one.

Proof: We must show that g(a,b) = g(c,d) implies that a=c and b=d for all (a,b) and (c,d) in the domain of g.

Assume that g(a,b) = g(c,d), then (a-b, a+b) = (c-d, c+d) or
a-b=c-d (eq 1) and a+b = c+d (eq 2)
a = c-d+b from the first equation and
a+b = (c-d+b) + b = c+d using the second equation
2b = 2d ⇒ b=d
Then substituting b for d in the second equation results in a+b = c+b ⇒ a=c

Onto Function

A function f from A to B is called onto, or surjective, if and only if for every element b∈B there is an element a∈A with f(a) = b.

∀b∈B ∃a∈A such that f(a) = b

Let f:R→R, where f(x) = x²+1

Prove or disprove: f is onto

Counter Example: Let y = 0, then there does not exist an x such that f(x) = x² + 1 since x² is always positive.

Let g:Z→Z, where g(x) = x²-x-2

Prove that g is one-to-one.

Not True! To prove a function is not one-to-one it is enough to give a counter example such that f(x₁) = f(x₂) and x₁ ≠ x₂.

Counter Example: Consider x₁ = 2 and x₂ = -1.
Then f(2) = 2²-2-2 = 0 ≠ f(-1) = -1² + 1 -2. Since f(2) = f(-1) and 2 ≠ -1, g is not one-to-one.
Let \(g: \mathbb{R} \to \mathbb{R} \), where \(g(x) = 3x - 5 \)

Prove: \(g(x) \) is onto.

Proof: Let \(y \) be an arbitrary real number. For \(g \) to be onto, there must be an \(x \in \mathbb{R} \) such that \(y = 3x - 5 \). Solving for \(x \), \(x = \frac{y + 5}{3} \) which is a real number. Since \(x \) exists, then \(g \) is onto.

Define \(g(a,b) = (a-b, a+b) \)

Prove that \(g \) is onto.

Proof: We must show that \(\forall (c,d) \exists (a,b) \) such that \(g(a,b) = (c,d) \).

Define \(a = \frac{c+d}{2} \) and \(b = \frac{d-c}{2} \), then

\[
\begin{align*}
 c &= c + \frac{d}{2} - \frac{d}{2} = (c/2 + d/2) - (d/2 - c/2) = (c+d)/2 - (d-c)/2 = a-b \\
 d &= d + c/2 - c/2 = (d/2 + c/2) + (d/2 - c/2) = (d+c)/2 + (d-c)/2 = a+b.
\end{align*}
\]

Therefore \(g \) is onto.

One-to-one Correspondence

The function \(f \) is a **one-to-one correspondence** or a **bijection**, if it is both one-to-one and onto.

Inverse Function, \(f^{-1} \)

Let \(f \) be a **one-to-one correspondence** from the set \(A \) to the set \(B \). The inverse function of \(f \) is the function that assigns to an element \(b \) belonging to \(B \) the unique element \(a \) in \(A \) such that \(f(a) = b \). \(f^{-1}(b) = a \) when \(f(a) = b \)

Example:

\[
\begin{align*}
 f(x) &= 3(x-1) \\
 f^{-1}(y) &= (y/3)+1
\end{align*}
\]

Examples

Is each of the following: a function? one-to-one? Onto? Invertible? on the real numbers?

\(f(x) = \frac{1}{x} \)
- not a function \(f(0) \) undefined

\(f(x) = \sqrt{x} \)
- not a function since not defined for \(x < 0 \)

\(f(x) = x^2 \)
- is a function, not 1-to-1 (\(-2, 2 \) both go to 4), not onto since no way to get to the negative numbers, not invertible
Composition of Functions

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The **composition** of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(a) = f(g(a))$.

Example: Let f and g be functions from \mathbb{Z} to \mathbb{Z} such that $f(x) = 2x + 3$ and $g(x) = 3x + 2$.

$f \circ g(4) = f(g(4)) = f(3(4) + 2) = f(14) = 2(14) + 3 = 31$

Quick Review

- A function from set A to set B assigns exactly one element of B to each element of A.
- A function f is said to be **one-to-one, or injective**, if and only if $f(x) = f(y) \rightarrow x = y$ for all x and y in the domain of f.
- A function f from A to B is called **onto, or surjective**, if and only if $\forall b \in B \exists a \in A$ such that $f(a) = b$.
- The function f is a **one-to-one correspondence or a bijection**, if it is both one-to-one and onto.

Suppose that $g: A \rightarrow B$ and $f: B \rightarrow C$ are both onto. Is $(f \circ g)$ onto?

Proof: We must show that $\forall y \in C$, $\exists x \in A$ such that $y = f(g(x))$.

Let y be an arbitrary element of C. Since f is onto, then $\exists b \in B$ such that $y = f(b)$.

Now, since g is onto, then $b = g(x)$ for some $x \in A$.

Hence $y = f(b) = f(g(x)) = (f \circ g)(x)$ for some $x \in A$.

Hence, $(f \circ g)$ is onto.

Counter Example: Let A be the set of natural numbers, B be the set of integers and C be the set of squares of integers where $g(a) = -a$ and $f(b) = b^2$. Then $g: \mathbb{N} \rightarrow \mathbb{Z}$ and $f: \mathbb{Z} \rightarrow \mathbb{Z}^2$. $(f \circ g)(a) = f(-a) = a^2$ is onto, $f(b) = b^2$ is onto, but $g(a) = -1$ is not since we can only get non-positive integers.

Let f be a function from set A to set B. Let S and T be subsets of A. Show that $f(S \cap T) \subseteq f(S) \cap f(T)$.
Let f be a function from set A to set B. Let S and T be subsets of A. Show that $f(S \cap T) \subseteq f(S) \cap f(T)$.

There exists $b \in f(S \cap T)$.

Then there exists a in $S \cap T$ such that $b = f(a)$.

Since $a \in S \cap T$, then $a \in S$ and $a \in T$.

Since $a \in S$, then $b \in f(S)$.

Since $a \in T$, then $b \in f(T)$.

Therefore $b \in f(S) \cap f(T)$.

Other interesting questions

- Suppose that $g:A \to B$ and $f:B \to C$ are both one-to-one. Is $(f \circ g)$ one-to-one?
- Does $(f \circ g) = (g \circ f)$?
- Suppose that $g:A \to B$ and $f:B \to C$ and f and $(f \circ g)$ are one-to-one, is g one-to-one?

Show that $(f \circ g)$ is one-to-one if $g:A \to B$ and $f:B \to C$ are both one-to-one.

Proof: We must show that, $\forall \ x, y \in A$, $x \neq y \rightarrow (f \circ g)(x) \neq (f \circ g)(y)$.

Let x, y be distinct elements of A. Then, since g is one-to-one, $g(x) \neq g(y)$.

Now, since $g(x) \neq g(y)$ and f is one-to-one, then $f(g(x)) = (f \circ g)(x) \neq f(g(y)) = (f \circ g)(y)$.

Therefore $x \neq y \rightarrow (f \circ g)(x) \neq (f \circ g)(y)$, so the composite function is one-to-one.

Inverse Image

- Let f be a function from set A to set B. Let S be a subset of B. We define the inverse image of S to be the subset of A containing all pre-images of all elements of S.
- $f^{-1}(S) = \{a \in A \mid f(a) \in S\}$
Let f be a function from A to B. Let S be a subset of B. Show that $f^{-1}(S) = f^{-1}(S)$

What do we know?
- f must be 1-to-1 and onto

Proof:
We must show that $f^{-1}(S) \subseteq f^{-1}(S)$ and that $f^{-1}(S) \subseteq f^{-1}(S)$.

Let $x \in f^{-1}(S)$. Then $x \in A$ and $f(x) \notin S$. Since $f(x) \notin S$, $x \notin f^{-1}(S)$. Therefore $x \in f^{-1}(S)$.

Now let $x \in f^{-1}(S)$. Then $x \notin f^{-1}(S)$ which implies that $f(x) \notin S$. Therefore $f(x) \in S$ and $x \in f^{-1}(S)$