More Set Definitions and Proofs

2.1, 2.2 Rosen 6th Edition

Mental Warm up with Symmetric Difference!

- Prove \((A \oplus B) \oplus B = A\)
- \(A \oplus B\) ↔ elements in A or B but not in both.

Prove \((A \oplus B) \oplus B = A\)

First prove by using a membership table.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A \oplus B</th>
<th>(A \oplus B) \oplus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A and \((A \oplus B) \oplus B\) have identical membership tables.

Now we will show that \(A \subseteq (A \oplus B) \oplus B\).

Let \(e \in A\).

Either \(e\) is also \(\in B\) or \(e \notin B\).

If \(e \in B\), then \(e \notin (A \oplus B)\) so \(e\) is an element of \((A \oplus B) \oplus B\).

If \(e \notin B\), \(e\) is an element of \((A \oplus B)\) and \(e\) must be an element of \((A \oplus B) \oplus B\).

Generalized Unions

The union of a collection of sets \(A_1 \cup A_2 \cup \ldots \cup A_n\) can be written more compactly using the notation:

\[
A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^{n} A_i
\]

Example: Let \(A_1 = \{a, b\}; A_2 = \{a, b, c\}; A_3 = \{b, c, d\}\)

\[
\bigcup_{i=1}^{3} A_i = \{a, b, c, d\}
\]
Generalized Intersections

The intersection of a collection of sets $A_1 \cap A_2 \cap \ldots \cap A_n$ can be written more compactly using the notation:

$$ A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^{n} A_i $$

Example: Let $A_1 = \{a, b\}$; $A_2 = \{a, b, c\}$; $A_3 = \{b, c, d\}$

$$ \bigcap_{i=1}^{3} A_i = \{b\} $$

More general example.

Let $A_i = \{1, 2, 3, \ldots, i\}$

Find $\bigcup_{i=1}^{n} A_i = \{1, 2, 3, \ldots, n\}$

Find $\bigcap_{i=1}^{n} A_i = \{1\}$

Sets are collections of objects that are unordered. Order can be important so we need a different structure to represent ordered collections of objects.

Ordered n-tuples

Ordered n-tuple

The ordered n-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element . . . And a_n as its nth element.

2-tuples are called ordered pairs.

$(10, 3) \neq (3, 10)$

Cartesian Product of A and B

Let A and B be sets. The **Cartesian Product** of A and B, denoted $A \times B$ is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$.

Hence $A \times B = \{(a, b) | a \in A \land b \in B\}$

Example: $A = \{1, 2\}$, $B = \{a, b, c\}$

$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$

Note that $A \times B \neq B \times A$
Cartesian Product of the sets A_1, A_2, \ldots, A_n

The Cartesian Product of the sets A_1, A_2, \ldots, A_n denoted by $A_1 \times A_2 \times \cdots \times A_n$ is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) where a_i belongs to A_i for $i = 1, 2, \ldots, n$.

\[A_1 \times A_2 \times \cdots \times A_n = \{a_1, a_2, \ldots, a_n \mid a_i \in A_i \text{ for } i=1,2,\ldots,n \} \]

Example: $A = \{0,1\}; B = \{1,2\}; C = \{0,1,2\}$

$A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$