Architecture at HP: Two Decades of Innovation

Joel S. Birnbaum

Microprocessor Forum
San Jose, CA
October 14, 1997
Computer Architecture at HP

• A summary of motivations, innovations and implementations in the period 1981 to the present

• Some observations about emerging systems requirements for the next decade and ongoing research to address them
A Capsule History

The 80s:
- RISC consolidation and evolution
- Spectrum, HP Precision Architecture, and PA-RISC
- Migration from HP 3000, 1000, M68000 architectures

The Early 90s:
- Beyond RISC: The quest for concurrency
- Superscalar, VLIW, Wide Word
- Compatibility with PA-RISC

1994 - Present:
- The Intel alliance
- Next generation technology and IA-64

WHAT’S NEXT?...
Precision Architecture Principles

• Compiler does what it does best
• Hardware does what it does best
• As simple as possible, but not simpler
• Measure / justify everything
 – Optimize for application throughput
 – Most work in least time
• Architecture scales across family of implementations
• Seamless migration essential
Technology Enablers of RISC Architecture

- Progress in VLSI: Fast registers, cache
- Globally optimizing compilers
- Performance measurement and analysis tools
Challenges of RISC Architecture

• Compiler accuracy and reliability
• Migration of legacy code
Major PA-RISC Innovations

- Compound instructions based on usage statistics
- Instruction nullification
- Legacy software migration
 - Binary code translation
 - Millicode
 - Migration centers
- 64-bit addresses
 - 32-bit segments
- Graphics and multimedia extensions
Why a New Architecture?

- Insatiable demand for more performance
- Processor/memory speed gap implications
 - Higher bandwidth
 - More registers
 - Overlapped memory latencies
- Need for greater number of instructions per cycle
- Diminishing gains from growing microprocessor design complexity
Industry Solutions

- Superscalar RISC
 - Improved ILP, but:
 - Significant hardware complexity
 - Not transparent to compiler
 - Asymptotic IPC of 1.5 - 3

- VLIW, Vector Architectures
 - Even higher ILP
 - Explicit parallelism
 - Parallelizing compilers
 - But limited applicability, scalability, and compatibility

- Drives the need for a new architecture
Microprocessor Performance Growth

- Architectural Improvement: 0.045 → 0.92 IPC
- Clock Cycle Improvement: 2.7 MHz → 60 MHz

Major Conclusion: High ILP Needs a New Architectural Approach

• High ILP requires explicitly scheduled code
 – Scheduling by compiler
• Architecture must expose parallelism
• Scalability across implementations and applications required
IPC Evolution from Architecture and Microarchitecture

Performance

- Superscalar RISC
 - 1.5 - 3 instructions / cycle

- RISC
 - ≤ 1 instruction / cycle

- 20-30% increase per year from semiconductor technology

Next Generation Technology

Time

- 1980
- 1985
- 1990
- 1995
- 2000
Need for a New Industry-Standard Architecture

- HP alone would not succeed with a new proprietary architecture: economics, acceptance by ISVs
- Technology alliance melds architecture/design/fabrication excellence of Intel with architecture and systems excellence of HP
- Opportunity for scalable common hardware platforms across operating systems
The Rest of the System?

- Processor
- Memory components
- I/O devices
- I/O devices
- Memory components
- Processor
The Rest of the System

- Application performance (K Conn./sec)
- CPU Performance (SpecInt95)
- I/O bandwidth (500MB/s / proc)
- I/O bandwidth (200MB/s / proc)
- I/O bandwidth (50MB/s / proc)
Changing Workloads

- Increasing system loads
- Increasing system bandwidth requirements
New Cost-Value Measures

Web Predictability
- Time (mins.): 1 to 50
- Response time (secs): 0 to 4.5

- Normal
- With HPLabs technology

Security
- Connections/sec: 0 to 180
- #Clients: 0 to 120

- Normal
- SSL encrypted

- Need mechanisms for predictability, security, reliability

Web Reliability
- Time (mins.): 1 to 50
- % Aborted sessions: 0 to 40%

- Normal
- With HPLabs technology
New Control Points

Processor-centric Semi-autonomous Subsystems

Processor-centric → Semi-autonomous Subsystems
New Control Points

... in an open industry standard framework that permits system value adds

Intelligent I/O (I2O)
e.g., IP routing, encryption, firewall, filtering, compression, high-speed back-up...
The New Challenges

Computing Components
- Semi-autonomous subsystems
- Integrated communication, memory, and computation

Computing Systems
- Distributed, heterogeneous systems of systems

Computing Services
(Information and Computation "Utilities")
The New Challenges

Computing Components
- Custom (embedded) processors
- New control points

Computing Systems
- Information appliances
- Utility servers

Computing Services
(Information and Computation "Utilities")
The New Challenges

Computing Components
- Custom (embedded) processors
- New control points
- Semi-autonomous subsystems
- Integrated communication, memory, and computation

Computing Systems
- Information appliances
- Utility servers
- Distributed, heterogeneous systems of systems

Computing Services
(Information and Computation “Utilities”)

HP Labs is focused on the new challenges of tomorrow