
Exploiting UML dynamic object modeling
for the visualization of C++ programs

Brian A. Malloy∗

Computer Science Department
Clemson University

James F. Power†

Computer Science Department
National University of Ireland

Abstract

In this paper we present an approach to modeling and vi-
sualizing the dynamic interactions among objects in a C++

application. We exploit UML diagrams to expressively vi-
sualize both the static and dynamic properties of the appli-
cation. We make use of a class diagram and call graph of
the application to select the parts of the application to be
modeled, thereby reducing the number of objects and meth-
ods under consideration with a concomitant reduction in the
cognitive burden on the user of our system. We use aspects
to insert probes into the application to enable profiling of the
interactions of objects and methods and we visualize these
interactions by providing sequence and communication dia-
grams for the parts of the program under consideration. We
complement our static selectors with dynamic selectors that
enable the user to further filter objects and methods from
the sequence and communication diagrams, further enhanc-
ing the cognitive economy of our system. A key feature of
our approach is the provision for dynamic interaction with
both the profiler and the application. Interaction with the
profiler enables filtering of methods and objects. Interaction
with the application enables the user to supply input to the
application to provide direction and enhance comprehension
or debugging.

Keywords: Unified Modeling Language, sequence dia-
gram, aspect oriented programming, program comprehen-
sion

1 Introduction and Motivation

The current trend in the construction of large scale, multi-
version systems is to exploit object technology to profit from
its advantages in reuse, extensibility, and ease of mainte-
nance over the procedural approach to application devel-
opment. However, the object oriented paradigm comprises
an interesting blend of powerful constructs and unique chal-
lenges in comprehension, debugging and testing of the appli-
cation. In the procedural realm, run-time program behavior
can be traced using a debugger, where code is executed on
a line-by-line basis. However, much of the complexity in
object oriented software lies in the interactions among the
objects and methods, rather than in the statements within
the methods [Jacobs and Musial 2003; Reiss 2003]. Although

∗e-mail: malloy@cs.clemson.edu
†e-mail: power@cs.may.ie

object and method interaction can be tracked using a tradi-
tional statement-level debugger, the scale and complexity of
these interactions provides compelling motivation for higher
level visualization techniques.

An increasingly accepted approach to modeling object
oriented applications is the Unified Modeling Language, or
UML, which provides a selection of graphs and diagrams for
capturing static and dynamic behaviors of an object oriented
application [Rumbaugh et al. 1999]. One of the primary driv-
ing forces behind the evolution of version 2.0 of the UML
standard has been “an approach to developing software that
shifts the focus of development from code to models, and to
automatically maintaining the relationship between the two”
[Selic 2004]. Many modern code development environments
already espouse this goal to some degree, offering integra-
tion between class diagrams and code projects, or use-cases
and testing strategies. However, there is relatively little re-
search on the exploitation of UML diagrams for visualizing
the dynamic behavior of objects and methods and even less
research on linking UML diagrams describing dynamic as-
pects of software, such as sequence diagrams and commu-
nication diagrams, with the run-time behavior of the code
they describe.

In this paper we present an approach to modeling and vi-
sualizing the dynamic interactions among objects in a C++

application. We exploit UML graphs and diagrams, typi-
cally used during the requirements and design phases of the
life cycle, to expressively visualize both the static and dy-
namic properties of the application. One of the central issues
in dealing with run-time properties of objects and methods,
and one that makes the domain particularly suitable to vi-
sualization, is the quantity of data involved. Even relatively
small programs can easily generate thousands of objects and
millions of method calls in a relatively short running time. In
our approach, we make static use of a class diagram and call
graph of the application to select the parts of the application
to be modeled, thereby reducing the number of objects and
methods under consideration, with a concomitant reduction
in the cognitive burden on the user of our system. We use as-
pects to insert probes into the application to enable profiling
of the interactions of objects and methods and we visualize
these interactions by providing sequence and communication
diagrams for the parts of the program under consideration.
We complement our static selectors with dynamic selectors
that enable the user to further filter objects and methods
from the sequence and communication diagrams, further en-
hancing the cognitive economy of our system.

An important contribution of our work is the construction
of a toolset, spidor1, which facilitates our investigation into
the pragmatics of our approach. A unique feature of our
work is that rather than using trace data generated from
program executions [Jacobs and Musial 2003; Jerding et al.

1spidor is a mnemonic for Selection and Profiling of the In-
teraction of Dynamic Object Representations.

Proceedings of ACM Symposium on Software Visualization (SoftViz’05)
May 14–15, 2005, Saint Louis, Missouri, USA



1997; Orso et al. 2003; Reiss 2003], we allow the user of
spidor to dynamically interact with both the profiler and
the application during live execution. Interaction with the
profiler enables filtering of methods and objects. Interaction
with the application enables the user to supply input to the
application to provide direction and enhance comprehension
or debugging. Since games and other graphics applications
pose unique challenges to comprehension and debugging, our
case study usage of spidor is an arcade game implemented
with the Simple Directmedia Layer, SDL [Pazera 2003].

In the remainder of this paper we describe the design of
our approach and the implementation of spidor, highlight-
ing the practicalities involved in event selection and run-time
profiling. Section 2 briefly reviews the terminology used in
this paper. Section 3 presents an architectural overview of
our work, including some of the issues relating to tracing C++

programs. Sections 4 and 5 present our Selector and Profiler
tools respectively. Section 6 surveys the existing work in the
field of visualizing object oriented applications, particularly
in relation to UML diagrams and object-level visualization.
Section 7 concludes the paper and describes future directions
of our work.

2 Background

Graph representations of program structure, control flow
and data flow, have long been a part of software develop-
ment. For example, a call graph consists of nodes represent-
ing call sites or functions and edges representing a function
invocation [Murphy et al. 1998]. Call graphs have been used
for comprehension and optimization of both procedural and
object oriented applications.

Recently, the object oriented approach has become widely
accepted due to its promotion of reuse, extensibility and
easier maintenance of large systems. To facilitate modeling
of object oriented applications, the Unified Modeling Lan-
guage, UML, has become widely adopted and utilized to
express different aspects of an object oriented system from
different viewpoints and at different stages of the develop-
ment life cycle [Rumbaugh et al. 1999]. The UML consists
of thirteen diagrams of which the most commonly used dia-
gram is the class diagram [Cook and Brodsky 1999], a graph
whose nodes are classes and whose edges express relation-
ships or dependencies between the classes. Class diagrams
capture information about the static structure of an object
oriented system. The UML also provides interaction dia-
grams that capture behavior or interactions among the class
instances, or objects, in an object oriented system. The in-
teraction diagrams that are important in our work include
sequence and communication diagrams.

A sequence diagram is an interaction diagram that models
time along the vertical length of the diagram and method in-
vocations between objects along the horizontal length of the
diagram. Sequence diagrams are the most commonly used
interaction diagram and are the object oriented counterpart
of a call graph. The communication diagram is a second
interaction diagram that shows instances of classes, their re-
lationships, and the flow of messages between the instances
[Ambler 2004]. Communication diagrams are similar to se-
quence diagrams with a difference that communication dia-
grams allow free placement of participants where connecting
links representing messages can be adorned with nested dec-
imal numbers to resolve ambiguity with self-calls. Further
discussion of this numbering can be found in Section 4.3,
with an illustration in Figure 7.

An object diagram is a form of interaction diagram that is

similar to a class diagram with a difference that the nodes
are instances rather than classes [Jacobs and Musial 2003].
Thus, an object diagram is sometimes called an instance
diagram. An object diagram is usually a special case of a
class diagram or a communication diagram [Ambler 2004].

In our approach to visualization, we use the call graph and
class diagram as static program representations that enable
the user to make fine-grained and coarse-grained selections
of the parts of the program to be profiled. We then provide
an interactive animation of the program during execution
using sequence and communication diagrams to illustrate
the program behavior. We provide further filtering of the
sequence and communication diagrams as part of our dy-
namic filtering to reduce the cognitive effort of the user of
our system.

3 System overview: Tracing C++
Programs

In this section we describe the principle technical details
relating to the spidor toolset, including the Selector and
Profiler tools. Although the focus of this paper is the vi-
sualization of C++ code, almost all of the development was
carried out in Python [Rossum 2003]. Python proved ideal
for the kind of text-processing required for the static aspects
of the tools, as well as the GUI development using the Tk-
inter module, which provides an interface to the Tk GUI
toolkit. Python’s rapid prototyping facility and ease of in-
teroperability with other tools were also important factors.

While a significant amount of software development takes
place in C++, the tools and techniques for analyzing, profil-
ing and visualizing this software are relatively less developed
than those for other object oriented languages. For exam-
ple, Java programs are easy to parse, either at source code or
bytecode level, and can be profiled either through JVM mod-
ification, inserting probes in the bytecode or, since version
1.4 of the SDK, using a built-in profiler API. In contrast, C++

is notoriously difficult to parse [Knapen et al. 1999; Malloy
et al. 2003], and does not have a rich, robust, standardized
run-time environment comparable to the JVM.

Figure 1 provides an overview of the system architecture
of the spidor toolset, with the static features illustrated on
the left and the dynamic features illustrated on the right side
of the figure. The input to the system is illustrated in the
lower left corner of the figure, an application written in C++.
The output of the system is illustrated on the right side of
the figure where we provide visualization of sequence and
communication diagrams on a Tk GUI canvas. We use the
gcc abstract syntax tree (AST) as our internal representation
of the C++ application; we provide more detail of this phase
of spidor in Section 3.1.

The rectangle in the center of Figure 1 represents the Se-
lector component of the spidor system. The Selector is
written in Python and takes the gcc AST as input via our
pyGast API, constructing a class diagram and system call
graph for the application.

The user can then select the classes, methods or method
invocations to be profiled, and, as explained in Section 3.3,
the relevant profiling code is then woven through the ap-
plication source code using AspectC++ [Mahrenholz et al.
2002]. This is compiled to an executable, in our case a Unix
shared object, that interacts with the Profiler to generate
and visualize the sequence and communication diagrams for
the selected parts of the application.

In the next section we provide more detail about the gcc



Sequence
diagram

Diagram
Communication

Aspect
Generator

Graph
Call

API
pyGast

Diagram
Class Python/C++

’glue’ code

Aspect C++

gcc

gcc
AST
files

C++
Code

Advice
code

Dot

pyDot

Profiler

callback
interface

Instrumented
executable

Selector

STATIC DYNAMIC

Pointcuts

Figure 1: System architecture. This figure presents the main components of the spidor toolset. External programs and APIs,
such as gcc are colored blue, generated code, such as the pointcuts, is colored green, and our own code is colored gold. The
C++ code for the program being profiled, shown here in white, is the input to the system.

AST and in Section 3.2 we provide more detail about our
use of Dot [Gansner and North 2000]. In Section 3.3 we
describe our use of aspects and in Section 3.4 we describe
our approach to connecting C++ and Python.

3.1 Interfacing with gcc

The spidor toolset uses the C++ compiler from the GNU
Compiler Collection, gcc, as its front end. We had previ-
ously used gcc as a basis for C++ program comprehension
by instrumenting its parser [Power and Malloy 2002], but
this proved difficult to maintain over various gcc releases.
Since version 3.0, gcc has begun to develop an internal ab-
stract syntax tree (AST) format, known as generic, which
provides a high-level representation of a C++ program [Mer-
rill 2003]. This representation is also reasonably accessible,
since it can be generated as a text file using a compiler switch
(-fdump-translation-unit-all).

However, it should be noted that most of the generic
documentation is in the form of comments in the gcc source
code, and some effort is required to disentangle the con-
structs used. We have written a Python API, pyGast, to
facilitate working with the gcc generic output. pyGast pro-
vides methods to parse the gcc output to produce a Python
representation of the AST, as well as providing facilities for
visitor-based AST navigation. Our pyGast API also builds
a representation of the class hierarchy, the call graph, and
provides output in text, XML and Dot formats.

3.2 Interfacing with Dot

Visualizing C++ programs statically and dynamically using
class diagrams, call graphs and communication diagrams re-
quires the construction of non-trivial graphs. To visualize

these graphs we use the Dot tool, part of the Graphviz graph
visualization software suite [Gansner and North 2000]. We
found the default Dot layout strategy, based on a hierarchi-
cal layout, to be the most suitable for each of the graphs
created. Since the main edges in all three diagrams were
based in some way on method calls, the use of the hierar-
chical layout helped to clearly present the flow of control
through the system.

We utilize an existing program, pyDot, to represent Dot
graphs, and both our Selector and Profiler tools develop this
to display Dot graphs in a Python canvas. In particular, our
Selector tool provides interpolation between the co-ordinate
systems of Python canvas objects and Dot graphs to allow
interaction with the Dot graph for the purposes of selecting
nodes and edges.

Visualization of sequence diagrams is unencumbered by
the layout problem inherent in visualizing call graphs and
class diagrams, since sequence diagram sequencing of mes-
sages is ordered by time. Thus, we use Dot to visualize
our call graph, class and communication diagrams, and we
map Tkinter widgets directly onto a canvas to visualize our
sequence diagrams.

3.3 Interfacing with AspectC++

In order to create run-time profile data we need to track
object creation and destruction, as well as method calls and
returns at run-time. To achieve this, we insert probes in the
C++ code at appropriate positions, as selected by the user. In
order to facilitate using spidor with multiple C++ programs
it was important to automate the process of instrumenting
the code.

This kind of cross-cutting concern is one of the standard



examples used to promote Aspect Oriented Programming
(AOP) [Gibbs and Malloy 2003; Kiczales et al. 1997]. The
AOP approach allows for such concerns to be specified sep-
arately in Aspects, and these are then woven into the code
using a special tool. For this project, we used the AspectC++

compiler [Mahrenholz et al. 2002], an implementation of
AOP for C++ that is similar in style to the more widely-used
AspectJ.

The parts of the program at which the new behavior is
to be added are referred to as pointcut, and the behavior
itself is called advice [Lohmann et al. 2004]. In this project
the pointcuts are specific to each profiling instance, and are
created using the Selector tool, described in Section 4. The
advice in each case involves interfacing with our Profiler tool,
and is the same for each program. Thus, the output of the
Selector tool is effectively a piece of AspectC++ code speci-
fying pointcuts, which can then be compiled, along with the
original code, to generate a version of the program that will
interact with the Profiler.

3.4 Interfacing between C++ and Python

Since our Profiler is written in Python, we require a facility
to interface with C++. Interfacing with the C++ code being
profiled is achieved using the Python/C API, which allows
Python code to call C and C++ code, and vice versa. Hence,
the advice woven into the code by the AspectC++ compiler
also contains hooks to this interface, allowing the Python
code to register handlers with the C++ code, which are then
called at each pointcut.

We emphasize that this process is automated, and requires
no user interaction or user modification of the C++ code.
Further, any Python code capable of handling a small set of
events can be used in place of the spidor Profiler.

3.5 Case Study: An Arcade Game

In subsequent sections we discuss the operation of our visual-
ization tools, and show examples of their use. The program
being visualized on each case is a simple arcade game, writ-
ten in C++ using the Simple DirectMedia Layer multimedia
library. Our approach, and the spidor toolset, is designed
work with any C++ program, and we use the arcade game
simply as an example.

We chose to profile an arcade game since game software
in C++ typically exhibits two properties that make visualiza-
tion desirable. First, traditional text-based debugging can
be difficult to synchronize with graphical or GUI-based soft-
ware. Second, many games lack design artifacts, such as
class diagrams, and an approach that re-generates these au-
tomatically from the code can be useful in itself.

The arcade game is written in just under 1,000 lines of C++

code, spread over 9 source files, describing 6 classes in total,
with a call graph containing 48 methods and 87 method
calls. As an example of the scale of the dynamic visualization
problem, running the game for just under 20 seconds leads to
the creation of 36,000 objects and just under 273,000 method
calls (not including constructors or destructors).

4 Static Visualization:
The Selector

In this section we describe the spidor’s Selector tool, whose
purpose is to visualize the classes and methods in a C++

program, and to allow the user to navigate through these

Figure 2: The Include File Selector. This figure shows the
include file dialog, one of the windows involved in setting
extraction options.

and select the methods and method calls to be profiled at
run-time. The Selector tool uses gcc to parse a C++ project,
as described in Section 3, and presents a class diagram and
a call graph for the project. The purpose of the Selector is
to allow the user to select those method calls in the program
that will be visualized at run-time.

The Selector tool allows the user to create a project for
each application, setting compiler and other options, and
adding the relevant source files to the project. In setting
up the project, a user defines the set of C++ files to be pro-
cessed. Once these have been selected we use gcc to calculate
file dependencies, and a further dialog box, shown in Figure
2, can then be used to remove individual header files from
consideration.

It is not necessary that all the files in an application be
added, since the eventual instrumentation code will augment
the code base, rather than replacing any elements of it. Be-
ing able to select only those files that are of interest is an
important aid to comprehensibility, since omitting files will
reduce the size of the class diagram and system call graph.
Being able to selectively add files to a project also aids mod-
ularization, since the source files for an application can be di-
vided over several Selector projects. The output from these
projects can then be used either individually or in any com-
bination to instrument the application.

4.1 The Class Diagram

The UML class diagram is a popular way of presenting a
high-level overview of an object oriented system, and is in-
creasingly used in programming environments as an aid to
code organization and navigation. The edges in a class dia-



Figure 3: The Class Diagram. This figure shows the Selector tool displaying the class diagram for the system. Each class is
assigned a unique color, and the layout is based on class dependencies.

gram represent relationships between classes, most notably
inheritance. However, associations based on field references,
parameters and local variables can also be represented.

Since we are interested in the interactions between meth-
ods in the system, we restrict the class diagram edges to
just two kinds: those representing inheritance, and those
representing dependencies between classes. A class C1 has
a dependency on class C2 whenever a method from C1 can
call a method from C2. Eliding associations and using Dot
to control the layout gives a rather unusual look to the class
diagram. Typically a class diagram, especially when used as
a design artifact, will use the inheritance relationship as the
main layout ordering edge, and use associations to impose
secondary orderings. However, we find that basing the lay-
out on dependencies is a significant aid to understanding the
flow of method calls, the main source of flow in our project
whose focus is dynamic object modeling. Figure 3 illustrates
a partial class diagram for the arcade game that we use as
our case study. At the root of the diagram is class Anima-
tionManager, which choreographs the actions of the game.
AnimationManager calls methods in classes ExplodingSprite,
Sound and Background, with stereotypes attached to each of
the edges emanating from AnimationManager to capture this
calling relationship.

4.2 The System Call Graph

The second overall view we present is the system call graph.
This graph is not part of the UML standard, nor does it
typically appear during system design, but is a tool com-
monly used in program analysis and software testing. In a
system call graph the nodes are the methods in the system,
and there is a directed edge between two methods m1 and
m2 whenever m1 can call m2. Figure 4 illustrates a partial
call graph for the arcade game that we use in our case study.
In the figure, function main is shown on the left side of the
graph with edges leading to the constructor and destructor
of AnimationManager, also shown in Figure 3. Figure 4 high-

lights the fact that all of the actions of the arcade game are
directed from AnimationManager.

A theme of our work is that we seek to exploit the widely
used UML notations as an aid to program visualization.
However, despite the importance of method interactions,
there is no UML diagram that completely meets the task of
representing these interactions. Elements of the call graph
can be derived from UML sequence diagrams, activity dia-
grams and communication diagrams, yet none of these pre-
sents the interactions between methods as clearly as the call
graph.

The system call graph presents all methods in the sys-
tem, and can be quite complicated, even for relatively small
C++ programs. An added advantage of our use of Dot to
layout the graph is the effect of exposing the ranking be-
tween methods in terms of the ordering of method calls, and
this provides a good overall view of the hierarchy of inter-
actions. Fixing a coloring scheme for classes and using this
coloring for the nodes in the call graph was a significant aid
to comprehension of the interactions among the methods in
our model.

The system call graph acts as a selector for method calls.
We adopt the convention that selecting a node implies pro-
filing all calls to that method, whereas selecting an edge
implies only profiling calls from the source method to the
destination method. The class diagram acts as a higher level
selector, where selecting a class implies the selection of each
of its methods in the system call graph.

4.3 Method and Class Call Graphs

One drawback of the high-level view presented by the system
call graph is that it can be difficult to distinguish edges for
methods that call, or that are called by, many others. To
deal with this we have implemented lower-level selectors in
both the class diagram and the call graph. Right-clicking on
a node in the system call graph presents a detail of the graph,
showing just the immediate predecessors and successors of



Figure 4: The System Call Graph. This figure shows the Selector tool displaying the call graph for the whole system. The
nodes in this graph, representing methods, are colored to indicate their owning class.

that node. The reduced information in this method call graph
can be laid out to clearly distinguish between the method’s
individual callers and callees. The window at the bottom of
Figure 5 illustrates a method call graph where the user has
right clicked on method Sound::playSound() and the figure
illustrates methods that call Sound::playSound() as well as
the methods called by Sound::playSound().

Similarly, clicking the middle mouse button on a class in
the class diagram or a method in the call graph produces
a class call graph. Here, we display the methods in the
class, along with the immediate predecessors and successors
of these methods from the call graph. These methods are
then grouped based on their class, giving a fine grained view
on the dependencies between classes. The same coloring and
selection conventions are used for all call graphs, and all are
kept synchronized, so that a selection in any one is propa-
gated to all the others. The rightmost window in Figure 5
also shows a class call graph where the user has clicked the
middle mouse button on a method in class Sound and all of
the methods that call methods in Sound are shown as well
as the methods called from within class Sound.

Clicking with the middle or right mouse buttons on a class
or method call graph replaces that call graph with the new
one. Thus the user can display the method call graph for
a method, and then follow the chain of calls one-by-one by
repeatedly right-clicking on one of the successor methods.
At any stage the user can click the middle mouse button
on a method and zoom out to the class call graph for that
method’s class.

At present the Selector provides a single class diagram
and system call graph, and allows for any number of popup

class or method call graphs. It should be noted however
that there is some overhead in maintaining consistency be-
tween selections in all these diagrams, and performance can
degrade if many views have to be maintained. In practice,
we do not envisage a need for more than one or two class or
method call graphs at any one time.

5 Dynamic Visualization:
The Profiler

The output of the Selector tool is an instrumented version
of the original C++ program, which is designed to interact
with a simple Python interface at run-time. The Profiler
tool described in this section implements this interface, and
displays run-time information about a program in terms of
UML sequence and communication diagrams.

The design of the Profiler is based loosely on the tradi-
tional command-line debugger. The user launches the pro-
gram from the Profiler, and can then step through its exe-
cution at a chosen level of granularity. Unlike a traditional
debugger, however, the user does not step through the actual
source code, but rather the sequence diagram corresponding
to the program’s execution. It is not intended that the Pro-
filer would be an alternative to a traditional debugger, but
rather a complimentary tool, since it concentrates on visual-
izing method interactions, rather than the details of method
execution.

The main window of the Profiler is shown in Figure 6.
The large red ’step’ button is used to invoke and return con-
trol to the C++ program being profiled, and the slider bar



Figure 5: Class and Method Call Graphs. These popup windows can be launched by selecting a node in the class diagram or
call graph, and show either a class-based or method-based subset of the call graph.

controls the number of events processed between each step.
In this context, an event is an object creation or destruction,
or the start or end of a method call. The profiler interacts
synchronously with the program being profiled. The pro-
gram is run for the designated number of steps, and then
pauses while control is returned to the Profiler so that the
user can examine the sequence diagram.

5.1 The Sequence Diagram

The sequence diagram uses the standard UML notation,
where each individual object is represented by a horizon-
tal bar, with the object name and class at the top. Each
’thickening’ of the bar represents a method belonging to that
object being executed. Method calls from one object to the
next are represented by horizontal arrows between the rel-
evant object bars. Thus, the sequence diagram increases in
width with each object creation, and increases in length with
each method call. A large ’X’ at the end of an object’s line
denotes the destruction of that object.

Navigation within the sequence diagram can be achieved
using either the slider bars, or the page navigation controls
on the panel. As with the selector tool, color is used to
identify objects from the same class. The color used in the
Profiler is the same as that used in the Selection tool, and
is relayed to the Profiler as part of the instrumentation.

Since the sequence diagram can quickly grow quite large,
two features were implemented to reduce its width and
height. Since a destroyed object has no further use for its
horizontal area, newly created objects are always positioned
in the leftmost free lane in the diagram. In order to reduce

the height of the diagram, the user can choose to ignore any
of the methods or objects at run-time. The ’Method filter’
button displays a pop-up list of the methods being profiled,
and the user can choose to enable or disable tracking of in-
dividual methods during the program’s run. The ’Object
filter’ button works analogously for objects.

5.2 The Communication Diagram

The UML communication diagram is a more traditional
graph, where the nodes correspond to individual objects,
and an edge denotes one or more method calls between the
objects. While the communication diagram could be main-
tained in parallel with the sequence diagram, in practice this
imposes a noticeable overhead on the Profiling. Also, the
communication diagram quickly becomes incomprehensible
for large volumes of data, since it does not follow the more
restrictive layout of the sequence diagram, where the most
recent events appear at the bottom, and the newest objects
appear on the right side of the diagram.

The approach taken in our tool is to provide the commu-
nication diagram on request. Thus, whenever the program is
stopped and the user is investigating the sequence diagram,
they can also press a button to produce the communication
diagram for that point in the program. Since communica-
tion diagrams can quickly become unmanageable, our dy-
namic profiler will only present the last 50 events. As is the
case for the Selector, an interface to the Dot tool is used to
provide graph layout information. Figure 7 shows a profiling
session with a communication diagram in the foreground.

We use the standard UML numbering system for com-



Figure 6: A Profiling Session. This figure shows the Profiler tool in action. The Profiler main window, displaying the sequence
diagram is shown in the top-left of the figure, and the C++ game being profiled is shown in the bottom-right of the figure.
Also shown are the popup method-filter and object-filter dialogs.

Figure 7: The Communication Diagram. The communication diagram, shown here in the foreground, can be launched at any
point during profiling. It can show the last 50 events; the slider bar allows the user to step through these events one by one.



munication diagrams in order to identify the sequence of
method calls. However, since this can be difficult to follow
in larger diagrams, we also provide a facility to mimic the
construction of the diagram on an event-by-event basis. The
slider bar at the bottom of the diagram allows the user to
step through the events one-by-one, and they are filled in on
the diagram as the slider bar is moved to the right. The most
recently traversed arc and the object owning the currently
executing method are highlighted at each step.

5.3 Object-Level Views

Even with static and dynamic event filtering, both the se-
quence and communication diagrams can rapidly become
quite large. The communication diagram in particular can
become quite difficult to follow for relatively short sequences
of events, especially if these events are concentrated between
a few objects. As is the case with our Selector tool, we deal
with this problem using selective views of the diagrams.

At any stage during profiling the user can select an object
in the sequence diagram and view either a communication
diagram or a sequence diagram specific to that object. In
both cases we visualize all messages sent to and from the
selected object, along with those objects directly involved in
those messages. These views allow the user to zoom in on a
particular object’s activity, without the confusion of sorting
through unrelated events. The window on the right of Figure
7 shows a communication diagram for object number 27, an
instance of Sprite.

6 Related Work

In this section we review the work that is most closely re-
lated to our approach. Due to space constraints we focus on
approaches that visualize UML diagrams or demonstrate a
filtering approach similar to ours. We note that some of the
recent research on garbage collection, for example GCspy
[Printezis and Jones 2002], parallels our work but from the
perspective of low-level heap visualization rather than UML
diagrams.

Jacobs and Musial describe an approach for debugging
Java programs using UML object diagrams [Jacobs and Mu-
sial 2003]. To capture a large diagram on a single page, they
provide more detail for the most recently examined graphical
elements and less detail for elements that are remote from
this recent element. Their approach enables the viewer to
examine as many as 75 classes on a single page, a three-fold
improvement over viewing the 24 complete classes that can
fit on a page using standard UML presentation such as the
presentation provided by ArgoUML.

Jacobs and Musial do not provide static selectors to fil-
ter elements for inspection. In our approach, we provide a
class diagram and a call graph to permit the user to stati-
cally select the relevant parts of the program to be profiled.
Moreover, we also provide run-time filtering to enable the
user to select the number of events to be viewed, and class
and method filtering to allow the user to eliminate selected
objects and messages from the profile. Our approach pro-
vides a fine-grained view of the interaction of objects and
method invocations through our animation of sequence di-
agrams; we also provide communication diagrams that are
symmetric with the sequence diagram currently under view.
Finally, our approach allows the user to interact with our
profiling system as the application is running, allowing the
user to control the filtering and selection in the profile win-
dow, transfer control back to the application to obtain fur-

ther profile information and to iteratively move between the
profile window and the application until terminating the run.
This interaction with both the profiler and the application
is unique to our approach to visualization.

Jones et al. present two tools, tarantula and gam-
matella, that utilize visualization techniques to effectively
transform program execution data into visual information
that can be explored and easily understood [Jones et al.
2002; Jones et al. 2004; Orso et al. 2003]. The tools use
coloring to summarize information about the program-ex-
ecution data, using a continuous spectrum of colors ranging
from red (danger), to yellow (caution), to green (safety). To
manage large programs, they provide representations of the
application at three levels of granularity from fine-grained to
coarse-grained: statement, file and system. To handle a high
number of program-execution data, gammatella provides
filtering, which permits the user to select a subset of exe-
cutions to be visualized, and summarization, which permits
the user to aggregate the program-execution data for a set
of executions. Since gammatella is used for deployed soft-
ware, filtering can help the user to focus on a subset of the
deployed executions and summarization can help the user
identify correlations among deployed executions.

The gammatella system is complementary to our spi-
dor system. Unlike our system, gammatella does not uti-
lize UML diagrams but rather uses visualization to capture
information about the data rather than to promote compre-
hension of the code through animation of the interactions
between objects and method invocations. Also, in our ap-
proach the user can dynamically interact with both the pro-
filer and the running application and the user can alter input
to the application as it is running; in the gammatella sys-
tem the user can only interact with trace data rather than
the running program.

Jerding et al. present the Polka animation toolkit, which
uses techniques for scalable visualizations based on call trace
files generated from C++ source code annotated by hand
[Jerding et al. 1997]. Polka visualizations are called exe-
cution murals, where time is shown on the horizontal axis
and each message, visualized as a single pixel wide vertical
line from source to destination class, shown on the vertical
axis. There are two views provided by Polka. The first view
allows a user to display and browse real-world event traces
of 100, 000+ messages. The second view attempts to visu-
alize interaction patterns by augmenting the first view with
automatic message pattern detection methods. The visu-
alizations of Jerding et al. are not animations of sequence
diagrams but rather compactions of interaction diagrams,
summarizing hundreds of thousands of messages and the pat-
terns within the messages. Unlike spidor, Polka does not
permit interaction with the application during execution.

7 Conclusions and Future Work

In this paper we have described our approach to selecting
and visualizing the dynamic interactions among objects in
an application. Using the internal abstract syntax tree for-
mat of gcc, generic, we build representations of a call graph
and class diagram to permit the user of our system to stati-
cally choose the parts of the program to model. We exploit
aspects, using AspectC++, to insert probes into the applica-
tion to enable profiling of invocations to constructors, de-
structors and methods. We build a profiler that monitors
the dynamic behavior of objects and we visualize this be-
havior by building sequence and communication diagrams.
Since these diagrams can quickly become large, we comple-



ment our static selectors with run-time selectors that permit
the user to filter objects and methods from the visualization,
thereby reducing the cognitive burden on the user.

The contributions of our work are as follows:

1. The design of a system for dynamic selection and visu-
alization of objects.

2. An examination of the pragmatics of our system
through the construction of a toolset, spidor, which
reduces the cognitive burden on the user by providing
static selection of classes and methods and dynamic se-
lection of objects and messages.

3. The visualization of sequence and communication dia-
grams illustrating objects and messages of interest to
the user.

4. Dynamic interaction with both the application and the
profiler. Interaction with the application enables the
user to supply input to the application to provide di-
rection and enhance comprehension or debugging. In-
teraction with the profiler enables filtering of methods
and objects for increased cognitive economy.

Our visualization project is ongoing and our future work
will take the following directions. We plan to conduct a com-
parison of the efficacy of sequence diagrams as compared to
communication diagrams in reasoning about large C++ ap-
plications. To apply our approach to large applications we
will investigate techniques to reduce the size of sequence di-
agrams by collapsing repeating sequences of messages into
a single sequence [Jerding et al. 1997]. We will also investi-
gate reducing the size of the communication diagrams using
techniques such as those described in [Jacobs and Musial
2003]. We also plan to incorporate more debugging facilities
into spidor, permitting the user to set breakpoints during
execution of the application. Finally, we plan to investigate
usage of spidor generated design artifacts to validate design
artifacts constructed earlier in the life cycle.

References

Ambler, S. W. 2004. The Object Primer, third ed. Cam-
bridge University Press.

Cook, S., and Brodsky, S. 1999. OMG analysis and de-
sign PTF, UML 2.0. In Request for Information, Response
from IBM Corporation.

Gansner, E. R., and North, S. C. 2000. An open
graph visualization system and its applications to soft-
ware engineering. Software: Practice and Experience 30,
11 (September), 1203–1233.

Gibbs, T. H., and Malloy, B. A. 2003. Weaving as-
pects into C++ applications for validation of temporal
invariants. In Proceedings of 7th European Conference on
Software Maintenance and Reengineering, 249–258.

Jacobs, T., and Musial, B. 2003. Interactive visual de-
bugging with UML. In ACM Symposium on Software Vi-
sualization, 115–122.

Jerding, D. F., Stasko, J. T., and Ball, T. 1997. Visual-
izing interactions in program executions. In International
Conference on Software Engineering, 360–370.

Jones, J. A., Harrold, M. J., and Orso, A. 2002. Visu-
alization of test information to assist fault localization. In
Proceedings of the 24th International Conference on Soft-
ware Engineering, 467–477.

Jones, J. A., Orso, A., and Harrold, M. J. 2004. Gam-
matella: Visualizing program-execution data for deployed
software. Palgrave Macmillan Information Visualization
3, 3, 173–188.

Kiczales, G., Lamping, J., Mendhedar, A., Maeda,
C., Lopes, C., Loingtier, J., and Irwin, J. 1997.
Aspect-oriented programming. In European Conference
on Object-Oriented Programming, 220–242.

Knapen, G., Lague, B., Dagenais, M., and Merlo, E.
1999. Parsing C++ despite missing declarations. In 7th
International Workshop on Program Comprehension.

Lohmann, D., Blaschke, G., and Spinczyk, O. 2004.
Generic advice: On the combination of AOP with gen-
erative programming in AspectC++. In Proceedings of
GPCE’04.

Mahrenholz, D., Spinczyk, O., and Schrder-
Preikschat, W. 2002. Program instrumentation for de-
bugging and monitoring with aspect c. In International
Symposium on Object-oriented Real-time distributed Com-
puting (ISORC), 249–256.

Malloy, B. A., Gibbs, T. H., and Power, J. F. 2003.
Decorating tokens to facilitate recognition of ambiguous
language constructs. Software, Practice & Experience 33,
1, 19–39.

Merrill, J. 2003. Generic and gimple: A new tree represen-
tation for entire functions. In GCC Developers Summit,
171–180.

Murphy, G. C., Notkin, D., Griswold, W. G., and
Lan, E. S. 1998. An empirical study of static call graph
extractors. ACM Transactions on Software Engineering
and Methodology 7, 2, 158–191.

Orso, A., Jones, J., and Harrold, M. J. 2003. Visual-
ization of program-execution data for deployed software.
In ACM Symposium on Software Visualization, 67–76.

Pazera, E. 2003. Focus on SDL, first ed. Premier Press
Game Development.

Power, J. F., and Malloy, B. A. 2002. Program an-
notation in XML: a parser-based approach. In Working
Conference on Reverse Engineering, 190–198.

Printezis, T., and Jones, R. 2002. Gcspy: an adaptable
heap visualisation framework. In OOPSLA, 343–358.

Reiss, S. P. 2003. Visualizing Java in action. In ACM
Symposium on Software Visualization, 57–65, 210.

Rossum, G. V. 2003. An Introduction to Python, first ed.
Network Theory Ltd, September.

Rumbaugh, J., Jacobson, I., and Booch, G. 1999. The
Unified Modeling Language Reference Manual. Object
Technology Series. Addison-Wesley.

Selic, B. 2004. UML 2.0: Exploiting abstration and au-
tomation. Software Development Times Issue 98 (March
15).


