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Abstract

In this paper, we describe our trace monitoring system
and a methodology for reverse engineering interface proto-
cols to capture the sequence of method invocations for large
C++ applications. To evaluate our system, we present a case
study using the networking library in the Mozilla Internet
Application Suite, and three Mozilla applications: Firefox,
Thunderbird and Sunbird. We use trace monitoring of the li-
brary to capture the interface protocols for the classes in the
library and our preliminary results support our assumption
that interface protocols follow a specific pattern and that
these patterns can facilitate comprehension of the underly-
ing interactions among the classes in the system.

1. Introduction

The process of software maintenance, including modi-
fication, refactoring, and usage of complex object oriented
systems, requires knowledge about the system under study
and, in particular, about the interactions among the classes
and components of the system. However, software artifacts
that describe these interactions are frequently unavailable
and for large, open-source C++ applications, they are virtu-
ally nonexistent. Thus, much of the research in software en-
gineering has focused on the development of tools to auto-
matically generate information to improve comprehension
of the application under study, and thereby facilitate the
maintenance effort.

In this paper, we present Hylian, our system for code
regeneration and trace monitoring in large C++ applications.
Hylian uses an augmented form of the GNU gcc parser to
output parse trees in XML format, permit modification of
the parse trees, and to regenerate a modified version of the

source code. We used an earlier version of Hylian to reverse
engineer a grammar for the gcc C++ parser, version 4.0.0
[5]; the current version permits modification of the parse
tree to extract trace information of a C++ application under
study.

To demonstrate the utility of Hylian, we generate trace
information, extract the sequence of method invocations,
and generate regular expression representations of the inter-
face protocols for Necko, a large networking library written
in C++ [9]. To exercise the Necko library, we use three large
applications in the Mozilla Internet Application Suite: Fire-
fox, Thunderbird and Sunbird, a browser, mailer and calen-
dar application respectively [8]. We then choose classes in
the Necko library that are used by the three applications and
examine the regular expression representation of the inter-
face protocols for the Necko library.

Our preliminary results support our assumption that the
interface protocols for these classes follow a specific pattern
and that these patterns can be used to facilitate comprehen-
sion of the class and to guide usage of the class by develop-
ers unfamiliar with the Necko library. Moreover, the regu-
lar expression representations of the interface protocol for a
class can serve as examples, or templates, of correct usage
of a class for a large library. We conjecture that these exam-
ples of library usage exemplify the comprehension model
needed in the maintenance of large libraries and, together
with other comprehension tools, can facilitate the mainte-
nance effort.

In the next section, we review the terminology and con-
cepts that we use in our work. In Section 3 we describe
our trace monitoring methodology and its use in reverse en-
gineering interface protocols. In Section 4 we present the
case study described above and in Section 5 we review re-
lated research. In Section 6 we draw conclusions.



Figure 1. The Hylian System. This figure illustrates Hylian, our code analysis and trace monitoring system.

2. Terminology and Concepts

In this section, we review the terminology and concepts
that we use in our work. In Section 2.1 we review grammars
and parse trees, and in Section 2.2 we review the concept of
trace monitoring.

2.1 Grammars, Parse Trees and ASGs

A grammar defines a language by specifying valid se-
quences of derivation steps that produce sequences of ter-
minals, known as the sentences of the language. One proce-
dure for using a grammar to derive a sentence in its lan-
guage is to begin with the start symbol S and apply the
production rules in some sequence until only non-terminals
remain. This process defines a tree whose root is the start
symbol, whose nodes are non-terminals and whose leaves
are terminals. This tree is known as a parse tree; the process
by which it is produced is known as parsing. Our system,
Hylian, generates parse trees that we augment to monitor
the execution of the libarary unders study.

2.2 Trace Monitoring

A trace monitor is a software artifact that observes the
actions in a software system and, when certain activities
are detected, the monitor executes some code of its own
[2]. Trace monitors are especially useful for the detection
or verification of runtime behavior. In our work, we use
trace monitoring to detect class method invocations and to
record a history of these invocations.

3. Protocol Extraction Methodology

In this section, we describe our system for monitoring
the execution of an application and its corresponding li-
brary, and for reverse engineering interface protocols for
C++ classes in the library. In the next section we present
the Hylian system that we utilize and in Section 3.2 we de-
scribe our approach to regular expression generation.

3.1 Overview of the Hylian System

Figure 1 summarizes the flow of information through the
system that we use. The source code for a C++ library is
shown as input to Hylian, shown as a tabbed box to the
left side of the figure. Hylian uses an augmented version
of the GNU gcc parser, version 4.0.0, to generate a parse
tree representation of the library code in XML format [5].
We produce transformed code to monitor the library by aug-
menting the parse trees with parse subtrees that contain code
to trace the method invocations in the library; this phase is
illustrated in Figure 1 as a tabbed box labeled Transformed
Library. The Transformed Library is compiled into object
code by the GNU C++ compiler, which is linked with the
object code for the application that will utilize the library.
The resulting executable, together with the input to the ap-
plication, produces the Protocol Strings, which are then
transformed into the Interface Protocol for the library, ex-
pressed as regular expressions.

3.2 Construction of Regular Expressions

We use an iterative algorithm to convert each protocol
string into a regular expression and, for a protocol string
of length n, our algorithm runs in O(n3) time. We first
search the protocol string for recurring patterns of size 1,
then recurring patterns of size 2, and continue the search,
looking for recurring patterns of size n/2. For example, in
searching for patterns of size 2, the string “abab” will be
converted to (ab)+. When the protocol string for each ob-
ject is converted to a regular expression, we then use a perl
package, Regexp::Assemble, to construct a single regu-
lar expression from the set of protocol strings generated by
each instantiation of the class under consideration.

There is an abundance of research describing techniques
to recover interface protocols using a finite state machine
or regular expression representation [4, 7, 10, 11]. Our fu-
ture work includes an investigation into these techniques to
improve our protocol recovery process.
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Figure 2. Study Summary. This figure illustrates our study to evaluate our methodology for generating interface
protocols for the Necko Networking Library utilized by the Mozilla Internet Application Suite.

Application Version Units Parse Tree
Necko 2.0a1pre 101 1,542,653
Firefox 3.0a8 1,262 27,857,127
Sunbird 0.6a1 1,586 33,023,605

Thunderbird 3.0a1pre 1,826 35,190,012

Table 1. Testsuite Statistics.

4. Case Study: The Mozilla Internet Suite

In previous sections of this paper, we described our ap-
proach for exploiting dynamic trace monitoring to capture
the interface protocols of classes in an object-oriented sys-
tem. In this section we describe a study that we conducted
to evaluate our methodology and to show the utility of our
approach. Our study involves an investigation into three
applications included in the Mozilla Internet Application
Suite: Firefox, a commonly used browser; Thunderbird, a
mailer; and Sunbird, a calendar management application
[8]. We use these applications to investigate usage of the
Necko networking library included in the Mozilla Internet
Application Suite.

Figure 2 illustrates our use of the Hylian analysis sys-
tem, presented in Section 3, for transforming library code
to provide dynamic trace monitoring and generate interface
protocols for the classes in a library. In our study, we use
the Necko library, listed on the left side of the figure, as in-
put to our system, transform and regenerate the code, and
use the GNU C++ compiler to generate object code for the
transformed library, Necko Transformed Library, shown
in the middle part of the figure. We then link the object
code representation of the Necko Transformed Library,
first with an object code representation of the Firefox appli-
cation, and then with an object code representation of the
Thunderbird application, and finally with an object code
representation of the Sunbird application to produce pro-

tocol strings for each application. We then find the union
of the protocol strings generated for Necko usage by each
application to produce protocol strings for Necko classes,
Protocol Strings, shown as a folded edge box (folded box)
at the middle right of the figure. We then generate an Inter-
face Protocol for Library, as regular expressions.

4.1 The Mozilla Application Suite

The statistics in Table 1 provide information about the
version and size of the four applications that we study in this
section. The first column lists the application, Application,
the second column lists the version number, Version, the
third column lists the number of compilation units, Units,
and the fourth column lists the number of lines in the parse
tree files, Parse Trees, for each application. The applica-
tions are ordered in the table by their parse tree size. For
example Necko, the Mozilla networking library, is listed in
the first row of the table and consists of version 2.0a1pre,
101 compilation units and 1,542,653 lines in the parse tree
file. The largest application, Thunderbird, is listed on the
last line of Table 1 and consists of version 3.0a1pre, 1,826
compilation units and 35,190,012 lines in the parse tree file.

4.2 Usage of the Necko Networking Library

Table 2 provides detailed information about the usage
of Necko by the Firefox, Thunderbird, and Sunbird appli-
cations, including some information about the generated
protocol strings for Necko classes. To exercise the Fire-
fox browser, we visited medium-sized websites containing
a number of images: nytimes.com, washingtonpost.com,
slashdot.org, and digg.com. To exercise the Thunderbird
application, we sent two emails consisting of plaintext and
HTML markup, and we received an email message with
a 1MB file attachment. To exercise the Sunbird calendar
application, we synchronized the calendar component with
three ICL formatted online calendars.
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Application Classes Instantiations Protocol Strings
Number Longest String Average Length

Firefox 76 14,055 14,055 59,070 31
Sunbird 55 1,297 1,297 17,578 68

Thunderbird 54 1,591 1,591 47,649 88

Table 2. Usage of Necko by the three Mozilla applications.

The first three columns of Table 2 list the application,
Application, the classes used, Classes, and the number of
classes instatiated, Instantiations, by the respective appli-
cation. For example, the Firefox application used 76 of the
142 classes in Necko, which is 21 more classes than the Sun-
bird application used, and 22 more classes than the Thun-
derbird application used, even though Firefox is the smallest
of the three applications, as measured by number of compi-
lation units and number of lines of parse tree code (cf. Ta-
ble 1). The sum of the instantiations in the third column
(14,055+1,297+1,591) is 16,943, the total number of class
instantiations for all three applications.

The final three columns in Table 2 list information about
the protocol strings, Protocol Strings, generated by each of
the three applications. The fourth column lists the number,
Number, of strings generated and, since each object gen-
erates a protocol string, the number of strings is the same
as the number of objects listed in the third column of the
table. The fifth column lists the length of the longest string,
Longest String, generated by each of the respective appli-
cations. The Firefox application generated the longest pro-
tocol string containing 59, 070 method invocations, which
means that one of the instantiated classes made 59, 070 in-
vocations of methods in the Necko library. The final column
of Table 2 lists the average length, Average Length, of the
protocol strings generated by the objects of the respective
application.

4.3 Class Comprehension in Large Systems: Reg-
ular Expressions for Necko

Figure 3 contains two tables that describe information
about the use of class nsDiskCacheInputStream in the
Necko networking library. The table at the top of the fig-
ure contains four columns listing the name of the appli-
cation, Application, the number of instantiations of ns-
DiskCacheInputStream, Instantiations, the number of
unique sequences of method invocation strings for ns-
DiskCacheInputStream, Unique Sequences, and the
interface protocol expressed as a regular expression, Inter-
face Protocol. The first row of the table at the top of the fig-
ure lists information for Firefox, which created 166 instanti-
ations of nsDiskCacheInputStream, generated 12 unique
method call sequences that are summarized by the regular

expression abc+ded. The last two rows of the table list in-
formation for Sunbird and Thuderbird, which did not create
any instantiations of class nsDiskCacheInputStream and
did not use any of the methods.

The table at the bottom of Figure 3 has two columns
where the first column, Mapping, specifies the mapping
between letters and method names and the second col-
umn, Unique Sequences of Method Calls, lists the set
of unique sequences of method invocations made by class
instantiations of the Firefox application on the Necko net-
working library. For example, the first row of the second
column of the table lists a sequence of 30 method invoca-
tions consisting of calls to ab, followed by a sequence of 25
calls to c, followed by calls to ded. Similarly, the ninth row
of the second column of the table summarizes a sequence of
158 method invocations consisting of calls to ab, followed
by a sequence of 153 calls to c, followed by calls to ded.
Note that we use dots to indicate that some of the 153 calls
to c have been elided from the ninth row of the table; how-
ever, all of the other sequences are illustrated precisely as
they were generated by our test cases.

The regular expression representation of the 12 se-
quences is listed in the fourth column of the first row of
the table at the top of Figure 3, abc+ded. In lieu of docu-
mentation, UML case tool artifacts or other specification of
the usage of a class, the reverse-engineered interface proto-
col can provide invaluable information about how a class in
a large system is used, or may be used. For example, using
the mapping, the typical usage of an instantiation of class
nsDiskCacheInputStream consists of a call to the con-
structor, a call to AddRef, followed by one or more calls to
Read, then calls to Close, Release and Close.

4.4 Comparison of Class Usage

Figure 4 illustrates a class instantiation history for those
classes in the Necko library that were used by the Firefox,
Thunderbird and Sunbird applications. Since we are inter-
ested in comparing usage by all three applications, the fig-
ure only lists those classes that were used more than ten
times by each of the applications.

The three bars on the left side of the figure represent
usage for the nsFileOutputStream class in the Necko li-
brary where the first bar indicates that Firefox created 44 in-
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Use of nsDiskCacheInputStream by Three Applications
Application Instantiations Unique Sequences Interface Protocol

Firefox 166 12 abc+ded
Sunbird 0 0 NA

Thunderbird 0 0 NA
Protocol Strings for Firefox Application

Mapping Unique Sequences of Method Calls
a → nsDiskCacheInputStream 01: abccccccccccccccccccccccccded
b → AddRef 02: abccccccccccded
c → Read 03: abccccccccded
d → Close 04: abcccccccccccccded
e → Release 05: abcccded

06: abccccccccccccccccded
07: abcccccded
08: abcccccccded
09: abccccccccccccccccccccccccc . . . ccccccded
10: abccccded
11: abccded
12: abccccccded

Figure 3. Method Invocation Sequences for Class nsDiskCacheInputStream.

stances, Thunderbird created 37 instances and Sunbird cre-
ate 28 instances of this class. The three bars in the middle of
the figure represent usage for the nsBufferedStream class
in the necko library where the first bar indicates that Fire-
fox created 66 instances, Thunderbird created 68 instances
and Sunbird create 56 instances of this class. The usage of
this class is more evenly distributed than the usage of ns-
DiskCacheInputStream illustrated in Figure 3.

We found that the generated regular expressions for more
heavily used classes in Necko can be less readable than the
regular expression, abc+ded that we obtained for class ns-
DiskCacheInputStream. For example, Firefox usage of
class nsDiskCacheInputStream generated the expression
abbcdbcb∗fbg∗ch∗(ggh)∗c∗e∗, which may not be as use-
ful as the one we obtained for class nsDiskCacheInput-
Stream, or may indicate that nsDiskCacheInputStream
has more complex usage patterns. Our ongoing work in-
cludes an investigation of some of the excellent regular ex-
pression generation algorithms in literature [4, 7, 10, 11].

5. Related Work

The generation of interface protocols can be accom-
plished using either static or dynamic analysis. The static
approach has the advantage of finding all possible se-
quences of method invocations but must address the prob-
lems of pointer alias [6] and infeasible paths. Moreover, the
static approach may provide interface protocols that are ir-
relevant to the application under consideration, as we have
seen in Section 4.4. the regular expressions can be overly
complicated. The dynamic approach has the advantage of
providing only those sequences of method invocations that
are relevant to the application under consideration and does

not suffer the problems of alias or infeasible path resolution.
The related work that we review in this section employs the
dynamic approach to protocol recovery.

Cornelissen and Moonen describe a technique for ad-
dressing the scalability problem in extracting information
from execution traces of function calls in Java programs [4].
They observe that certain event sequences are repetitive,
where the repitition typically results from the occurrence
of method invocations within loops. Their summarization
technique entails the use of similarity matrices to visualize
the repetitive method invocation sequences in the trace. Re-
curring sequences of method invocations appear as patterns
in the matrix. However, the sequences appear in the matrix
as diagonal lines and this abstraction results in the loss of
information about the identity of the methods in the recur-
ring sequences. The approach that we describe in this paper
entails summarizing the recurring sequences of method in-
vocations as regular expressions, which has the advantage
of maintaining the identity of the methods involved in the
recurring sequences.

Walkinshaw et al. describe the construction of state ma-
chines from user supplied scenarios and execution traces of
Java programs [10]. They use the scenarios from the user,
the execution traces and the QSM state-merging approach
to interactively generate a state machine of the system. Our
approach differs from that of Walkinshaw et al. in that our
technique is fully automated and does not require user sup-
plied scenarios.

Butkevich et al. describe an extension to the Java pro-
gramming language to facilitate static conformance check-
ing and dynamic debugging of object protocols [3]. Object
protocols are sequencing constraints on the order in which
methods in a Java application may be invoked. In their
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Figure 4. Necko Usage by Firefox, Thunder-
bird and Sunbird.

work, regular expressions are used to specify the confor-
mance relation between two object protocols. However, the
work of Butkevich et al. does not entail the reverse engi-
neering of existing interface protocols, nor do they apply
usage of interface protocols to program comprehension.

Archer et al. develop a checkable, executable specifica-
tion that captures the rules for correctly using an interface
in a TinyOS application [1]. They refer to this specifica-
tion as an interface contract and they develop an approach
for checking the interface contract using a source-to-source
program transformation that adds checks to existing TinyOS
applications. However, they do not reverse engineer the
contracts and they do not demonstrate the pattern that these
contracts typically exemplify.

Quante and Koschke describe a dynamic protocol recov-
ery technique based on object process graphs (OPGs) [7].
The advantage of their approach is that OPGs contain infor-
mation about loops and the context within which a method
was called. They introduce a new metric for comparing au-
tomata and a case study involving Java and C programs.
The focus of Quante and Koschke is on their recovery pro-
tocol technique that exploits context to improve the regular
expression generation process; their technique improves on
our brute force regular expression generation approach.

6. Concluding Remarks

We presented Hylian, our system for code regeneration
and trace extraction in large C++ applications. We have
demonstrated the utility of Hylian by generating trace infor-
mation, extracting the sequence of method invocations, and
generating regular expression representations of the inter-
face protocols for Necko, a large networking library written
in C++, utilized by the Mozilla Internet Application Suite
[9]. We generated interface protocols for Necko using three
large applications in the Mozilla Suite that use the Necko
library: Firefox, Thunderbird and Sunbird [8].

The preliminary results of our case study of Necko sup-
port our assumption that the interface protocols for these
classes follow a specific pattern and that these patterns can
be used to facilitate comprehension of a class, to guide us-
age of the class, or to measure the complexity of usage of
the class by developers unfamiliar with the Necko library.
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