Proceedings of the IASTED International Conference
Software Engineering and Applications
October 6-8, 1999, Scottsdale, USA

Integrating a GUI into

a Command Driven Application

Brian A. Malloy} John D. McGregor
Dept. of Computer Science
Clemson University
Clemson, SC 29634
{malloy,johnmc}@cs.clemson.edu

ABSTRACT

Many applications in use today are driven by a com-
mand line interface rather than a graphical interface.
Most of these applications are robust, popular and
proven in general usage. The convenience and ease
of use that a graphical interface provides might make
these applications available to a wider range of users.
In this work, we describe a technique that exploits os-
treams and subtyping to integrate a graphical inter-
face into a command driven application. The tech-
nique that we propose does not create a new process
to construct the communication linkage nor does it re-
quire a sentinel to terminate the linkage. We use the
technique to integrate a graphical interface into legacy
code, o grader program, that maintains a list of stu-
dent grades. The grader program is coded in C++,
exploits the Command and Envelope-Letter patterns
and uses the standard library containers, algorithms
and iterators to implement much of its functionality.

Keywords: Design Patterns, class diagram, graph-
ical user interface, component, architecture, standard
C++ library

1 INTRODUCTION

There are many applications in common use today
that are driven by a command line interface rather
than a graphical interface. Most of these applications
are robust, popular and proven in general usage. The
uuencode or pkzip utilities that operate under the MS-
DOS environment, are typical examples of these fre-
quently used applications. However, the convenience
and ease of use that a graphical interface provides
might make these applications available to many peo-
ple who would not otherwise use them. Thus, the in-
tegration of a graphical user interface into a command

*Brian completed part of this work on sabbatical at the Na-
tional University of Ireland, Maynooth, Ireland.

299-039

Shannon Hughes

Advanced Software Construction Center

Lucent Technologies
Cary, NC 27511
srhughes@lucent.com

driven application represents a useful contribution to
the computer industry.

Previous approaches to integrating a graphical in-
terface into legacy code have focused on using a varia-
tion of a pipe to negotiate the communication between
two processes where the master process is the graph-
ical interface and the slave process is the command
driven application; the vehicle of communication be-
tween the two processes is a file[1, 2]. The advantage
of this approach is that, in most cases, the commu-
nication can be established without knowledge of the
source code of the command driven application. The
disadvantages of the technique are that the I/O in the
command driven application must be limited to stdin,
stdout and stderr and the linkage can be slow and, for
some large applications, the system may stall[2].

In this paper, we present a technique that exploits
ostreams and subtyping to integrate a graphical in-
terface into a command driven application. An os-
tream is a mechanism for organizing and maintaining
sequences of characters[4]; subtyping entails construc-
tion of a derived class that refines the behavior of the
parent class[3]. The technique that we propose does
not create a new process to construct the communica-
tion linkage and does not require the use of a sentinel
to terminate the linkage. Further, our technique is
not limited to communication through stdin, stdout or
stderr.

We use our technique to integrate a graphical in-
terface into legacy code, a grader program, that main-
tains a list of student grades. The grader program
is coded in C++ and exploits the Command pattern
and the Envelope-Letter pattern, and uses the stan-
dard library containers, algorithms and iterators to
implement much of its functionality'. The graphical
interface that we integrate into grader uses the V. C++
GUI toolkit[6], a public domain package that supports

1 Historically, the standard library has been referred to as the
Standard Template Library (STL)

| File

B Statistics for avg
High grade: 99.8 2
Low grade: 33.5
Rverage: 77.4
Hedian: 90
5td Dew: 26.76

File Edit Tools Help About

File
Il Hane avg

. Hulder, Fox 99,9]
. Skully, Dana as

Gunnan, Lone a1

Han, Snoking 90

. Skinner, Halter 84,5
. Throat, Deep
. Krychek, RAlex 33.5

SNEmanwpe

Dj#lal &g 2|
1

Hane exanl exan2 avg
1. Gunnman, Lone 99 a3 91
2. Krychek, Rlex 44 23 33.5
3. Han, Snoking 85 95 90
4, Hulder, Fox 100 99.5 99.8
5, Skinner, Halter a5 84 84,5
6. Skully, Dana 98 a8 a8
7. Throat, Deep 90 L1} 45

Tine: 09:54:18 PH 05 Apr 1998

Figure 1: This figure illustrates the display of a grade list, in the lower left corner of the figure, together with
a display of a statistics window in the upper left corner. The window in the upper right corner of the figure
illustrates a sort window with the student list sorted by grade values in column avg from high grade to low grade.

most popular graphical objects found in GUI environ-
ments and performs on multiple platforms including
Linux, Unix and Windows 95.

The remainder of this paper is organized as fol-
lows. In the next section we present an overview of the
grader program followed by a review of previous tech-
niques to integrate a graphical interface into legacy
code. In Section 4 we present the design of the com-
mand line package that exploits object technology and
the standard library and in Section 5 we present the
design and implementation details of the graphical in-
terface that we integrate into the grader program and
in the final section we make some concluding remarks.

2 OVERVIEW OF THE GRADER
PROGRAM

The grader program implements the functionality
required to maintain a list of grades or grade list. De-
tails of the design and implementation of the grader
program are provided in subsequent sections; we now
present a description of this functionality.

There are sixteen commands provided to users of
both the command line version and the graphical ver-
sion of grader. These commands enable functionality

required to maintain a database of grades, including
commands to display the grades, find particular stu-
dents, delete students, delete columns of grades, create
new columns of grades possibly by numerically com-
bining existing columns and commands for performing
statistical analysis of the database. The picture in Fig-
ure 1 illustrates three of these commands. The lower
left section of Figure 1 illustrates the display command
that displays all names and grades in the current grade
list. The upper left section of the figure illustrates
the stat command that, for a specified column, lists
the highest grade, the lowest grade, the average of all
the grades, the median and the standard deviation.
The upper right section of Figure 1 illustrates the sort
command that sorts a column of grades and prints the
corresponding student name to the left of the grade.
For example, the third command in the figure is define
that permits the user to create a new column by (1)
defining the new column by a formula that contains
column names, constants or operators, or (2) defining
a new column with each student’s grade set to zero.

Command Framework

CommandParser Command

Graphical Framework

T

AddNam GenCommand

Menu

Data Framework

AddStu

GradeSheet

Figure 2: This figure illustrates the relationships among the class frameworks used in the grading program.

3 INCORPORATING A GUI INTO
LEGACY CODE

There have been three important approaches to in-
tegrating a graphical interface into legacy applications
that have been reported in the literature[2, 5, 7]. All
three of these approaches use a pipe as the communica-
tion interface between the legacy application and the
graphical interface; we review two of these approaches
in this section.

Reference [2] presents an approach that uses anony-
mous pipes to link an MS-DOS program to a Windows
program. Anonymous pipes are typically used to di-
rect communication between a parent and child pro-
cess; however, the technique presented in reference [2]
permits the linkage to be accomplished without knowl-
edge of the source code of the MS-DOS program. To
establish an input linkage, the auxiliary pipe technique
consists in (1) creating a pipe, (2) setting the read han-
dle of the pipe to stdin, and (3) running the MS-DOS
program as a new child process that inherits handles
created by the parent (GUI) process. After the input
pipe linkage has been established, all input to the MS-
DOS program will be from the pipe rather than the
console or keyboard. An output link is established in
analogous fashion.

Reference [1] presents an approach that uses a
pseudo terminal to integrate a legacy application into
a Unix graphical user environment. A pseudo-terminal
is a pair of devices, or files; one device behaves as a
master and the other as a slave. Data written to the
master appears as input to the slave and data written
to the slave appears as input to the master. The slave
portion of the pseudo-terminal can be used by a child
process as a terminal device (stdin, stdout, stderr). To
integrate the legacy application, the pseudo-terminal

is used together with an xterm, telnet and a mediator
process to give the user accelerators and macros. The
disadvantage of using the pseudo-terminal approach is
that older variants of Unix code can be difficult to im-
plement. Also, the performance of pseudo-terminals
can be sluggish.

4 THE DESIGN OF THE COM-
MAND LINE APPLICATION

Figure 2 illustrates the framework of classes and
their relationships in the grader program. The fig-
ure includes three frameworks: the command frame-
work, the data framework and the graphical frame-
work. The command and data frameworks were in-
cluded in the original command driven interface; the
graphical framework was added after the command
interface was fully implemented. The figure summa-
rizes the classes in each of the frameworks; we provide
details for the graphical framework in Section 5.

5 DESIGN OF THE GUI

In this section we present the class framework used
to construct the graphical interface to the grader pro-
gram. The GUI design is composed of V classes, or
classes that comprise the V package, and classes de-
rived from V that implement our graphical interface.
Figures 3 and 4 illustrate both kinds of classes where
classes starting with the letter “v” are the V package
classes and the other classes are the ones that we have
written to implement our graphical interface. We will
not discuss those classes that comprise the V package;
the interested reader can find details of these classes in

v

?

¢ CrnclWinclow

£

Graderion

Girader Craclincow Grader Crocd Subdindow:

v Tinner

iy

Gracler Tirner

Figure 3: This figure illustrates the classes that create the top level window for users of the grader program.

the V Reference Manual[6]. Class GraderApp, depicted
in Figure 3, is derived from the V class vApp; Grader-
App contains function AppMain whose actions create
the top level window that represents the graphical in-
terface for the application currently in use. All infor-
mation about active windows is maintained in Grader-
App so that if a window is closed, or the application
is closed, the memory for the window will be deallo-
cated. Thus, all instances of windows are created and
deleted in GraderApp.

Class GraderCmdWindow, also shown in Figure 3, is
derived from vCmdWindow; an instance of GraderCmd-
Window is the top level window that controls the menu
bar, command bar (tool bar), and status bar. Class
GraderCmdSubWindow is also derived from vCmdWin-
dow; an instance of GraderCmdSubWindow is a sub-
window that can be opened from the top level window.
Sub-windows do not contain the same items that the
top level window contains; our sub-windows contain
two menu items and no tool or status bars. The pur-
pose of our sub-windows is to display subsets of the
text that is displayed on the top level window. For
example, if the user sorts student averages, the results
are displayed to a sub-window to allow the user to
see the averages isolated from the top level window.
Obviously the elaborate tool bar or menu bar, used
in a top level window, is not needed in a sub-window
to accomplish simple tasks such as painting subsets of
text. The two menu items allow the user to close the
sub-window or save the canvas’ text to a file.

Figure 4 illustrates the classes that implement all
dialogs in the graphical interface. Class StudentModal-
Dialog, shown in the figure, constructs the modal di-

alog that permits the user to choose student names
for modification or deletion. Class GradeModalDialog
is the modal dialog that permits the user to change
a student’s grade. The GradeModalDialog instance al-
lows a user to choose a student name from one list box
and a grade item (test, program assignment, etc) from
a second list box. After both list items are selected the
current grade for the selected student and grade item
is displayed as a label within the dialog window. Also
included in this dialog window is an option to permit
the user to enter a new grade in a text box updating
the selected student’s grade. The ColumnChoiceDia-
log class allows the user to pick a grade from a list of
grades. This class is used to delete grades, to sort stu-
dent grades in ascending order and to view statistics
on a given grade (class average, highest grade, etc).
The CreateListDialog class is a modal dialog that al-
lows the user to create a new student list. To build
a new student list the user begins entering student
names in a text box and then uses the mouse to select
a button to either continue adding students to the stu-
dent list or to terminate the expansion of the student
list.

Finally, the GraderCanvasPane and GraderSubCan-
vasPane classes handle any text displayed to the screen
and redraws a window’s canvas after maximizing or re-
sizing the window. The GraderTimer class is used to
update the system time every second and displays the
time on the status bar.

v Dialog

|

 Modal Dialog
W Motice Dialo wW¥MFeply Dialog Student Modal Dialog CreateDialog Column Choice Dialog
wEileSeldct vFieply Dialog GradeModal Dislog dd ColomnDislog

Figure 4: This figure illustrates the classes that are used to implement dialog boxes in the graphical interface of

the grader program.

6 CONCLUDING REMARKS

In this paper, we describe our technique for incor-
porating a graphical interface into a command driven
application. Our technique exploits ostreams and sub-
typing and requires minimal alteration to the applica-
tion source code. We have used our technique to in-
corporate a graphical interface into a grader program
written in C++ that uses the Command pattern and
the Envelope-Letter pattern. The table in Figure 5
summarizes the technique that we used to incorpo-
rate the graphical interface into each command. The
first column in the figure lists the commands that were
integrated into the graphical interface using a direct
call to the instance of the command letter, the second
column lists the commands that were integrated us-
ing sub-classing, the third column lists the commands
that were integrated using ostreams, and the fourth
column lists those commands that were integrated us-
ing the facilities provided by the V package. Storage
of data in the grader program is accomplished using
containers, algorithms and iterators in the standard
library.

References

[1] W. L. Crowe. A pseudo-terminal class for unix.
C/C++ Users Journal, pages 21-29, March 1998.

[2] D. Klementief. A windows shell for legacy ms-dos ap-
plications. C/C++ Users Journal, pages 71-74, June
1997.

Direct Call | Sub-classing || Ostream [| V Library ||

addnam new sort, help

addstu define stat find
o|| delcol modify display

delnam formula define

exit modify

save formula

load

Figure 5: This table contains columns that summarize
the technique that we used to incorporate the graph-
ical interface facilty into each command. Some of the
commands required the use of both sub-typing and
ostream techniques.

[3] J. Rumbaugh, M Blaha, W. Premerlani, F Eddy, and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, 1991.

B. Stroustrup. The C++ Programming Language.
Addison-Wesley, 1997.

U. Vahalia. UNIX Internals:
Prentice-Hall, 1996.

The New Frontiers.

Bruce Wampler. The v c++ gui framework.
http://www.objectcentral.com.

D. A. Young. The X Window System Programming and
Applications with Xt: OSF/Motif Edition. Prentice-
Hall, 1997. ISBN: 0-13-497074-8.

