A Study of Phased Branch Behavior
in C++ Applications

Vinay Rajagopalan
Clemson University
Computer Science Dept
Clemson, SC USA

vrajago@cs.clemson.edu

ABSTRACT

We investigate the notion of phases as they occur in object-
oriented programs. The focus of our investigation is on C++
programs and our test suite includes various kinds of object-
oriented programs including scientific and general-purpose
applications. We focus on individual phased branch behav-
ior and attempt to capture information and generalize about
the frequency of phased behavior. We provide guidance
about the advantages of path profiling over edge profiling
in determining phase change in various program executions.

General Terms

profiling, edge profiling, path profiling, simulation, program
optimization

1. INTRODUCTION

The tremendous interest and growth in the internet has
brought with it a demand for mobile code that is compact
and efficient. The idea behind mobile code is that applica-
tions can be distributed quickly across computer networks
and automatically executed upon arrival. For these appli-
cations to run efficiently, they must adapt to the run-time
environment of the target architecture. In view of the de-
mand for speed, there is evidence that traditional static op-
timizations may not provide the efficiency required for mod-
ern mobile applications. Moreover, there is increased use of
object-technology in these mobile applications with a con-
current belief that object-oriented code, with its frequent use
of dynamic binding, is less amenable to traditional, static
optimizations.

One optimization in common use today is feedback-directed
optimization, FDO, which uses program characteristics, ob-
tained at runtime, to attempt to improve the performance
of the application. Most FDO approaches use profile guided
compilation, which facilitates determination of those parts of
a program to modify to maximize performance[?]. Profiling
entails instrumenting an application to obtain a cost metric
such as time spent in a method or the number of times a
method executes. This metric can indicate those parts of

Brian A. Malloy
Clemson University
Computer Science Dept
Clemson, SC USA

malloy@cs.clemson.edu

a program where optimization is likely to achieve the most
benefit[?]. However, there are some significant drawbacks to
profile guided optimization.

One drawback results from the static nature of feedback-
directed optimization techniques. Usually a program is in-
strumented for profiling, executed, and optimized based on
characteristics seen during the program run. The resulting
optimized program tends to perform well when the same
characteristics that were present during profiling continue
to exist. Recent work has shown that changes in the input
of a program can dramatically effect the behavior of com-
mon commercial applications[?]. If the input to a program
changes, the optimizations performed on a previous execu-
tion may no longer be beneficial [?]. In fact, the performance
of a statically optimized program may degrade appreciably,
so that performance is worse than the un-optimized version
of the program(?].

A second drawback with FDO relates to the determination
of the instrumentation strategy that is likely to provide the
most information at a tolerable cost. Traditional approaches
to profile guided optimization construct a graphical repre-
sentation of the program that describes the flow of control,
and then place counters at vertices or edges in the graph.
Edge profiles record an aggregate count of the frequency of
edge executions that provide general information about the
behavior of a program.

However, reference [?] argues for the collection of more de-
tailed information than aggregate edge information to de-
scribe a program’s run-time characteristics, introducing the
notion that the run-time behavior of a program cycles through
a series of phases. For example the branch prediction and
cache miss rate might be more accurately described over
the execution of a program using phases[?]. Phase profil-
ing might address the shortcomings of edge profiling if one
could detect changes in phase and apply an optimization
more suited for a particular phase and later apply a differ-
ent one for a different phase.

To illustrate the impact that phased behavior might have on
optimization, consider the graph in Figure 1, which models
the run time branching behavior of an application. The
branch shown in the figure is biased towards “taken” 55% of

sample branch from lcom benchmark

100%

90%

=—sampled taken bias

—average taken bias

G0%

0%

60%

S0%

% taken bias

40%

30%

20%

10%

0%

] 2000 4000

6000

Bo00 10000 12000

ith branch execution

Figure 1: Phased Behavior. This is a branch taken from the lcom benchmark which exhibits phased behavior. The pink line
at y = 55% represents the average bias for the branch. The blue line represents the sampled taken bias for the branch. The
sampled bias seems to interleave between periods of being strongly taken and being weakly taken. An optimization based
purely on the aggregate bias would adversely affect performance during the period of very weak taken bias.

the time; that is, aggregate information would lead the pro-
filer to conclude that the branch is likely to be “taken” more
often than not. However, the sampled taken bias interleaves
between periods of strong bias towards “taken” and periods
of “not taken”. An optimization based strictly on the 55.5%
average bias would perform poorly during the phases with
significant bias towards “not taken”.

In this paper, we investigate the notion of phases as they
might occur in object-oriented programs. The focus of our
investigation is on C++ programs and our test suite includes
various kinds of object-oriented programs including scientific
and general-purpose applications. We focus on individual
phased branch behavior and attempt to capture informa-
tion and generalize about the frequency of phased behavior.
We provide guidance about the advantages of using path
profiling over edge profiling for improving the performance
of programs that exhibit phased branch behavior.

The remainder of this paper is organized as follows. In
the next section we provide background about various ap-
proaches to program profiling, including the notion of su-
perblock scheduling. In Section 3 we describe the simulation
tool that we exploit to investigate phased behavior and in
Section 4 we describe our case study that forms the ba-
sis of our conclusions about phased behavior. In Section 5
we discuss the results we obtained from analyzing phased
behavior for individual branches. In Section 6 we discuss
the impact that our study might have on profiling research
and we overview related work in Section 7. In Section 8 we

discuss ways to enhance and extend our work. Finally, in
Section 9 we summarize and conclude.

2. BACKGROUND

In this section, we provide definitions of terms and back-
ground about profiling. We discuss both edge and path
profiling including a greedy algorithm for computing edge
profile information. We conclude this section with a discus-
sion of phases and phased behavior, including the impact of
phased behavior on superblock scheduling.

2.1 Profiling

One of the common uses of profiles is to derive paths taken
during program execution for use in path based optimiza-
tions[?]. Edge profiling records the execution count of tran-
sitions between basic blocks[?] or edges. Since edge profiles
summarize path execution using aggregate edge counts|?; ?],
programs paths must be derived from a profile. Generally
path based optimizations are performed on hot paths, heav-
ily executed paths, in order to gain the best performance
gain with limited resources.

One technique for deriving heavily executed paths from an
edge profile is to use a greedy algorithm which follows the
edge with the maximum execution frequency out of a basic
block[?]. This greedy algorithm does not always produce
accurate results; more specifically, the greedy algorithm may

misidentify which path significantly contributes to overall
control flow of a program. For example, given an edge profile
for a CFG such as Figure 2a, a greedy algorithm would
incorrectly identify ACDEF instead of ABDEF as the most
frequently executing path.

Path profiling addresses the shortcomings of edge profiles by
recording the actual paths taken within an application[?].
Looking at Figure 2a, path profiling can disambiguate be-
tween the two paths and determine which path actually con-
tributed significantly to the control flow of the program.
Since the frequency counts for actual paths are recorded in-
stead of aggregate edge counts, the correct hot path ABDEF
was found for the CFG in Figure 2a.

The additional accuracy provided by path profiling can be
beneficial for certain optimizations based on run-time profile
information. Young and Smith demonstrated improvements
which can be made to superblock schedulers using path pro-
filing[?; ?]. A superblock scheduler attempts to improve pro-
gram performance by increasing the amount of instruction-
level parallelism (ILP) extractable within the program
code[?] by using superblocks. A superblock is a sequence of
basic blocks with one entry and one or more exit points[?;
?]. A superblock allows a compiler to locate ILP beyond
the bounds of a single basic block. Side entrances to the
superblock are eliminated using tail duplication. Tail dupli-
cation consists of copying the basic blocks from the desti-
nation of a side entry to the end of the path to new basic
blocks. The side entry is changed to point to the newly
copied blocks instead of the superblock[?]. For example, if
the nodes A, B, D, and E from Figure 2a are chosen to form
a superblock, then the edge from C to D would represent a
side entry. The tail of the path, nodes D and F, would be
copied to new basic blocks and the node C would point to
the newly created node for D.

One of the optimizations superblock schedulers perform is
loop unrolling by representing an unrolled loop bodies as su-
perblocks. To get the maximum performance benefit out of
loop unrolling using superblocks, side exits must be avoided
or at least kept minimal since side exists could causes misses
in the instruction cache[?]. To avoid side exits, superblocks
are generally created for hot paths[?; ?].

A superblock scheduler based on edge profiles for detecting
hot paths would unroll the loop in Figure 2a as (ACDEF)"
where r is an unrolling factor. For example, an unrolling fac-
tor of 3 would create the superblock ACDEFACDEFACDEF.
The superblock created using edge profiling would take an
early exit at node A to node B about 120 times based on
the path profile in Figure 2a. A superblock scheduler which
used the path profile in Figure 2a would be able to detect
the hot loop path ABDEF and unroll the loop as follows
(ABDEF)".

Even though path profiling seems more attractive than edge
profiling due to the more detailed profiles, path profiling
incurs a more significant overhead than edge profiling[?].
Ball and Larus’s path profiling algorithm adds about 31%
overhead to a program; whereas, edge profiling adds about
16% overhead to a program|[?]. Using statistical sampling of

the program counter, the overhead associated with profiling
can be reduced to about 1 - 3%][?].

For path profiling to be more useful than edge profiling, path
profiling has to be able to amortize its overhead through-
out the execution of a program by recognizing a significant
amount of program behavior which is not possible by using
edge profiling techniques. Young and Smith describe the
cause of inaccuracies within edge profiles as being due to
intersecting frequently executing paths[?]. In Figure 2a this
happens at node D. Whether the path ACDEF executes the
most depends on how much low ABDEF takes from ACDEF
along the DE edge.

Edge profiling needs the path ACDEF to be the most fre-
quently executing path in all path profiles in order to be
preferable to path profiling contrary to what actually oc-
curs in Figure 2a. Thomas Ball, et. al. describe the behav-
ior needed for edge profiles to able to identify hot paths by
defining the definite and potential flow of a path[?].

The definite flow of a path within a program represents a
lower bound on the execution frequency of the path. If a
path within a program has a definite flow of f, then the
execution count assigned to that path from any path profile
must be at least f[?]. Path profiling is not needed to de-
termine definite flow for paths within a program. To com-
pute the definite flow of a path, the edges that join into the
path are subtracted from the flow at the target of the path’s
last edge. For example, to compute the definite flow for
the path ACDEF in Figure 2a, the edge count for edges
BD and DF would be subtracted from the flow at node
F. The resulting definite flow for path ACDEF would be
50(50 = 270 — ((270 — 150) + (270 — 170))).

The potential flow of a path determines the maximum execu-
tion count a path can have in any path profile for a program
execution[?]. The potential flow of a path can be found by
looking for the edge in the path with the lowest execution
count. The potential flow for the path ACDF in Figure 2
is 100 since the edge DF has the lowest frequency count on
the path.

Depending on the amount of potential or definite flow present
within a program, one can determine whether an edge pro-
file can adequately find heavily executed paths. If there is a
large amount of definite flow in an application, edge profil-
ing provides an adequate level of detail to produce heavily
executed paths within the program since definite flow is si-
multaneously recognizable in all path profiles.

Looking at the CFG in Figure 2a, we can see the path
ACDEF has a definite flow of 50(50 = 270 - ((270-150)
+ (270-170))) which means all frequency assignments for
path ACDEF will have at least an execution count of 50.
The definite flow of 50 for ACDEF is relatively small com-
pared to the potential flow(lowest execution count for edge
along a path) for the remaining paths. The potential flows
for paths ACDF, ABDF, and ABDEF are 100, 100, and 120
which gives some room for the paths ACDF, ABDF, and
ABDETF to steal flow away from ACDEF.

270

Detected Hot Path
Using Edge Profiling

= ACDEF
ABDEF 120
ACDF 100 Detected Hot Path
ACDEF 50 Using the Path Profile

= ABDEF

270

120 w ©
TRACE: (ABDEF) (ACDF) (ACDEF)

Figure 2: Ezample CFGs. A) This example CFG demonstrates that an edge profile can sometimes misidentify the most
frequently executed path within a program. A commonly used greedy algorithm which follows the most frequently executed
edge out of a basic block would identify path ACDEF as the hot path while ABDEF is actually the hot path. B) This
example of a CFG in which an edge will be able to find the hot path ACDEF. C) This is an example of a set of superblocks
created(unrolled using an unrolling factor of two) using the path profile in A) and taking the phased behavior of the branches

at node A and D into account.

If the edge counts for the CFG in Figure 2a were adjusted
such as in Figure 2b, the definite flow for the path ACDEF
is 130(130 = 270 - ((270-230) + (270-170))) which higher
than the potential flows for the remaining paths(ABDF =
40, ACDF = 100, ABDEF = 40). Since the definite flow for
the path ACDEF is higher than the potential flows for the
remaining paths, path profiling is not needed.

2.2 PhasedBehavior

We intended to analyze the phased behavior in individual
branches of some C++ benchmarks to determine whether
path profiling was preferable to edge profiling in terms of

identifying hot paths within a program. We originally thought

that phased behavior of individual branches can be used as
an indicator of the amount of definite flow within a pro-
gram. If a conditional branch had only one phase(highly
biased towards one direction) , we thought that the branch
had a large amount of definite flow. If a branch had a large
number of phases, we conjectured that this indicated a small
amount of definite flow for either edge of the branch.

Examining the CFGs in Figure 2a and Figure 2b we can see
why our assumptions may not be correct for acyclic paths as
used in Larus and Ball’s path profiling algorithm. For the
CFG in Figure 2a the conditional branch at node A could
just consist of one phase biased for 150 out of 270 execu-
tions towards the AC edge which we would have incorrectly
thought indicated a large amount of definite flow. Also,
for the CFG in Figure 2b the conditional branch at node A

could consist of a large amount of insignificant(small amount
of executions) phases which interleave the executions of the
edges AB and AC resulting in a misclassification of the paths
having a small amount of definite flow. A more accurate
measure might be to look for conditional branches which
phases that have relatively equal length(number of execu-
tions). Also a good indicator might be just to look for nodes
with side entry and exit points where hot paths intersect[?].

On the other hand, having branches that exhibit phased be-
havior can be a good indicator that additional optimization
opportunities exist in less dominant paths not just in the
dominant hot path. Suppose a trace such as
(ABDEF)'*°(ACDF)'°(ACDEF)* induced the edge and
path profile in Figure 2a. We can see that the conditional
branches at node A and D have phased behavior. For the
first 120 executions, the branch at node A is biased towards
B. For the remaining 150 executions, node A is biased to-
wards C. The branch at node D interleaves between being
biased towards E and F.

A superblock scheduler based on path profiling which ig-
nores the phases present at node A and D would create a su-
perblock such as (ABDEF)". The superblock (ABDEF)"
would take an early exit to node C for the remainder of the
trace after 120 executions and would taken an early exit at
node D to node E for 100 iterations.

A superblock scheduler which takes phases into account could
create three superblocks (ABDEF)", (ACDF)", and
(ACDEF)". The side exit from node A in superblock

(ABDEF)" could linked to node C in super block (ACDF)"
to account for the phase change n the branch at node A. For
the side exit from node D in super block could be link to
node E in superblock (ACDEF')" to account for the phase
change in node D. The resulting superblocks are shown in
Figure 2c. By taking phases into account, a superblock
scheduler was able to reduce the number of early exits to
only two occurences. One at node A for the transition to
the superblock (ACDF)" and one at node D for the transi-
tion to superblock (ACDEF)".

In order to expose the the less dominant paths, path pro-
filing is needed since edge profiles store an aggregate count
of the paths that execute within a program. Adding the
executions counts for the edges along the paths in the path
profile contained in Figure 2a gives us the edge profile in Fig-
ure 2a. Since this edge profile contains an aggregate count
for the paths in Figure 2a, the exact contribution of each
path to the total flow of the CFG can not be determined
by simply looking at the edge profile[?; ?]. To gain benefits
from phased branch behavior, path profiling must be used
to isolate paths other than the dominant hot path.

3. THE SIMULATION TOOL

In this section, we describe our overall approach toward the
detection of phased behavior. We describe Shade, the sim-
ulation tool that we used.

To evaluate phased behavior in C++ programs, all the con-
ditional branches within an application are traced. For each
branch, the sequence of taken or not taken bits are stored.
To look at the changes in branch phases and the tendency
for a branch to stay biased in one direction for a significant
period of time over the execution of a program, a sampled
bias is computed. After a specified number of executions
(granularity), the amount of a branch’s bias towards taken,
not taken, or towards neither direction is stored as the sam-
ple’s bias. C++ applications were written to process the
trace files containing sampled biases and generate plots to
describe the phased behavior present in individual branches
in C++ programs.

To trace individual branches with a program, we used a
software simulator called Shade[?]. Shade is an execution
profiling framework(see Figure 3) that allows programmers
to build analyzers that can retrieve per instruction informa-
tion about an application such as the instruction address,
effective address, taken bit, and opcode. Software simula-
tion has the advantage of flexibility, permitting the level of
traces to be modified at runtime. For example using EEL[?]
or Machsuif[?] would require code to place instrumentation
around branches to call tracing functions. Shade places in-
strumentation for calling tracing functions and for storing
trace information on behalf of the programmer.

Shade provides instruction-level access to information in the
form of trace records. Users can specify the type of instruc-
tion information needed and the class of instructions to trace
such as conditional branches or memory operations. For
each desired instruction that shade encounters, shade stores

per instruction information within the trace record. The
user can specify the number of instructions to be traced at
a time along with an array of trace records to store the infor-
mation. If the default trace information provided by shade
is not sufficient, users can specify functions that are called
before and after an instruction executes.

We used Shade to obtain a conditional branch trace. We de-
veloped a shade analyzer that specified conditional branches
to be traced. The analyzer plugs into the Shade framework
to produce an application tracer that is shown in Figure 3.
The analyzer recorded the instruction address(for identifi-
cation) of the branch and whether the branch was taken or
not. In order to obtain information about the phases that a
branch may go through, individual branches were sampled
at an adjustable level(granularity). Sampling was used in
order to show changes in branch phase that may not be nec-
essarily reflected by a profile that stores an aggregate edge
count[?]. Looking at Figure 1 we can see that sampling of
the taken bias shows interleaving patterns of high and low
taken bias that can not be determined by just looking at
the average taken bias. The granularity or sample size de-
termines the number of branch executions contained in a
sample. A granularity level of 1000 would represent 1000
executions of a particular branch. Also sampling reduced
the size of the trace files obtained by running the analyzer.

In order to determine how a branch was biased during a sam-
ple,the bias of a branch was represented as a fuzzy set[?]. A
fuzzy set allows partial membership in multiple sets. For
our purposes we used three sets for a branch’s bias: taken,
not taken, or neither taken or not taken. We allowed par-
tial membership between the neither set and taken or not
taken sets. We did not allow partial membership between
the taken and not taken sets since we used the neither set
to represent a transition period when a branch is not sig-
nificantly biased towards taken or not taken. Each set has
a membership grade associated with it that determines the
strength of a sample’s membership in a particular set. The
set with the highest membership grade, height function[?],
is chosen to be the sample’s bias. This allows a sample to be
labeled mostly taken, mostly not taken, or not highly biased
in either direction rather having to be a 100% member of a
particular set.

To compute the membership grade for each sample of a
branch, we maintain a fuzzy value for each branch. We
use the fuzzy value to compute the membership grade to
a particular set for each sample. Initially the fuzzy value
for each branch is set to zero. A hash table was used to
map each branch to its corresponding fuzzy value. When-
ever a particular branch occurs during program execution
the branch’s instruction address is used as the hash key to
obtain the branch’s fuzzy value. If the branch was taken,
the fuzzy value is incremented. If the branch was not taken,
the fuzzy value is decremented. This process continues un-
til the granularity level(sample size) is reached. Once the
granularity level is reached the fuzzy value for the branch is
divided by the granularity level, which puts the fuzzy value
between -1 and 1. Next the membership functions for each
of the sets are applied to the branch’s fuzzy value. The

SHADE

EVENT ..
LOOP

FRAMEWORK

SHADE
ANALYZER
PLUGIN

Figure 3: Shade Framework. Shade is a framework for tracing applications. Users build analyzers and plug the analyzer into

the shade framework.

Load Application Begin tracin, lication
SHADE ppl g 'g app

FRAMEWORK

1. Trace specifed number of branch instructions
instructions
2. Store information in trace records.

4—< Finished Tracing Application

shadeuser_initiaize() shadeuser_pnalyze()

1. Set size of trace record

SHADE

shade_run(trace records, number of records)

shadeuser_terminate()

YES Update fuzzy valuesin

2. Specify to trace only conditional
branches Initialize array of trace records ‘
3. Initialize branch hash table

ANALYZER

Moreinstructions to trace?

Free hash table memory

hash table for each branch
that occured

NO

NO -
Granularity level reached?

YES

Find phase bias.
Write phase bias to
tracefile.

Figure 4: Conditional Branch Tracing Using Shade. The figure above describes how our shade analyzer interacts with the

shade framework to trace conditional branches.

membership functions use the fuzzy value to determine the
membership grade the sample has in each set (taken, not
taken, and neither).

The membership functions are as follows:

taken, f(x) = {

z ifz>0
0 otherwise

—z ifz<0
not taken, f(x) = { 0 otherwise

not taken, f(x) = —|z| +1 for all =

The set with the highest(height function[?]) membership
grade represents the sample’s most significant bias. For ex-
ample if we had a trace of 20 branch executions such as
11101110111110111111(1 = taken, 0 = not taken), the fuzzy
value would be computed as follows:

Not Taken =0
Taken =1
Granularity = 20
Branch Trace : 11101110111110111111

fuzzy value = 1+1+1-1+1+1+1-1+1+1+1+1+1-1
+1+1+1+1+1+1 = 14
fuzzy value = 14/(granularity) = 14 / 20 = 0.7

Next, the 0.7 fuzzy value would be fed into each of the mem-
bership functions:

taken membership grade = £(0.7) = 0.7
not taken membership grade = £(0.7) = 0
neither membership grade = £(0.7) = 0.3

sample’s bias = maximum(taken membership grade,

not taken membership grade,
neither membership grade)

= maximum(0.7, 0, 0.3)

= 0.7

mostly taken

Visually we can see how the membership functions map the
branch sample’s fuzzy value to its resulting bias in Figure 5.

Next the branch’s resulting bias, instruction address, length
of the sample, and the membership grades for each of the
sets are written to a trace file. After the trace file has been
updated, the fuzzy value is reset to zero. This process of
computing a sample’s bias continues until the program ter-
minates. For a summary of the process see Figure 4.

4. THE CASE STUDY

To gauge the amount of phased branch behavior, we con-
structed a testsuite of C++ programs. We collected pro-
grams that represented a variety of applications. Each of
the programs served as benchmarks for the simulator. The
benchmarks include an incremental dataflow constraint solver
called deltablue[?], an operating simulator called richards,
an optimizing compiler for a hardware description language
called Icom, a sample back-end called id! from the Object
Management Group for the Interface Definition Language,
an object oriented ray tracer called eon, and an object ori-
ented graphics editor called ¢draw built using the InterViews
framework[?]. Note idraw, idl, and deltablue are designed in
an object oriented fashion[?]. Also, we included a program
named eon that was not included in previous studies[?; ?].

Each of these benchmarks was built using GCC 2.8.1 except
lcom which was built using GCC 2.7.3. All of the bench-
marks were executed on a SPARC Ultra 10 using our shade
analyzer to create a trace file consisting of sampled bias
data for each branch. A C++ program was written to ex-
amine the trace file and determine the number of phases
for each individual branch in a benchmark. Adjacent sam-
ples with similar bias were chained together to form a single
phase(see Figure 6). After adjacent samples with similar
bias were combined, a cumulative distribution plot was gen-
erated to compare the number of phases versus the percent-
age of branches that had contained at least those number of
phases.

5. RESULTS

We used the Shade simulator to analyze each of the bench-
marks to evaluate the amount, consistencies, and variations
in individual branch behavior for the benchmark programs.
We evaluated the effects of different granularities on the
phased behavior in each of the programs. We used a cu-
mulative distribution graph to view the number of phases
each branch has within a program. Also, the input for each
program was held constant, except for the interactive GUI,
idraw. At the time of the study we were not aware of a

scripting engine for GUT’s but we have since discovered An-
droid, an excellent scripting engine for GUI testing and eval-
uation[?].

5.1 Methodology

Each of the graphs in Figures 7a through T7f illustrate the cu-
mulative distribution of the phases in a conditional branch(x-
axis) as compared to the percentage of branches(y-axis) that
have at least one phase for a given granularity. Three dif-
ferent granularities were used for this study: 1000, 500, and
100. The different granularities allowed us to evaluate the
variation in phased behavior in conditional branches with
respect to the length of the branch. For each graph, the
point z = 1 represents the amount of branches with just
one phase and no phased behavior. This point was used to
determine the amount of individual phased branch behavior
present within each benchmark.

5.2 Overall PhasedBehavior in Conditional
Branches

The graphs in Figures 7a - f seems to show that a signif-
icant portion of the branches for the benchmarks exhibit
phased behavior which may give evidence that path pro-
filing could be useful in exploiting optimization opportuni-
ties present in phased branches. The mean percentage of
branches with phased behavior is 13% at a granularity of
1000, 13.7% at a granularity of 500, and 17% at a gran-
ularity of 100. The mean values seem to increase as the
granularity gets smaller which may indicate that the major-
ity of phased branch behavior in the benchmarks(except for
eon and deltablue) seems to occur mostly in branches with
a relatively small number of executions provided the phases
are a significant portion of a branch’s execution.

The reason why we feel that most phased behavior occurs in
the branches with a smaller number of executions is due to
the relatively small number of phases occurring within each
branch exhibiting phased behavior as seen in Figures 7b, d,
and f and due to the increase in the percentage of branches
showing phased behavior as the granularity is decreased.
As the granularity is decreased, the number of phases per
branch still seems low. If phased behavior was mainly oc-
curring in branches with a larger number of executions, we
would expect the number of phases per branch to increase
and the phased branches to be more evenly distributed over
the number of phases per branch as the percentage of phased
branches in a benchmark increases with decreasing granu-
larity.

It could also be the case that the phases within each of the
benchmarks are an insignificant portions of a branch’s exe-
cution so when the granularity is decreased more interleav-
ing phases are detected. This would also explain the small
amount of phases occurring per branch within the branches
with phases. We do not think this is likely, but we can not
be certain unless have length information about the branch
phases.

N\ /

\ / 0.7
N/

\/ ——taken
/\ not taken | —

—neither MAX (0.7, 0.3, 0,0)

MOSTLY TAKEN (0.7)

0.3

0.0

02 0.4

Figure 5: Determining Branch Bias. This figure demonstrates how a branch’s bias is determined. The fuzzy value is applied
to each of the membership functions. The membership set that has the highest membership grade is chosen as the bias for

the branch.

B TAKEN
B NOT TAKEN

Figure 6: Phase Combining. Adjacent samples with similar bias are combined. In the figure the first two samples with taken
bias are combined. Also the next three samples are combined since all three samples are biased towards not taken.

5.3 Variations in the Number of PhasesPer
Branch

The phased branches within the benchmarks except for eon
spend most of their executions in a small number of phases.
For example at a granularity level of 1000, 99% of the con-
ditional branches in deltablue contain 7 phases or less. In
contrast, the phased branches within eon seems to be more
evenly distributed over the possible amount of phases per
branch that they can contain. Looking at Figure 7b, the
phased branches within the eon benchmark look much more
evenly distributed over the number phases it can contain per
branch than the other benchmarks.

5.4 Changesin the Percentage of Branches
with PhasedDueto Changesin Granular-
ity

As the granularity was decreased, the percentage of branches

with phased behavior within the idraw, lcom, richards, and

idl benchmarks increased. This increase was most pronounced
in the lcom benchmark. As the granularity was lowered from
500 to 100, the percentage of branches exposed with phased
increased from 20% to 31%. Also , for the richards bench-
mark initially did not show any branches with phases at a
granularity of 1000, but at a granularity of 100 the percent-
age of branches exposed with phases increased to 8%.

Unlike the idraw, lcom, richards, and idl benchmarks de-
creasing the phase granularity for the deltablue benchmark
does not expose more phased branch behavior. In fact, the
percentage of branches with phased behavior decreases from
19% to 16% when the granularity is decreased from 500 to
100. This decrease might indicate that branches that have
more executions tend to exhibit more phased behavior than
branches that have a few executions within the deltablue
benchmark.

The eon benchmark seems to behave quite differently than
the other benchmarks. The changes in granularity do not
seem to have much of an effect on the benchmark. The

branches that have a small number of executions seem to
have the same percentage of branches with phases as the
branches that have a large number of executions. Also, the
phased branches within eon seems to be more evenly dis-
tributed over the number of phases per branch that they
can contain; whereas, the phased branches within the re-
maining benchmarks spend most of their execution in only
a few phases.

6. DISCUSSIONOF RESULTS

In this section, we attempt to evaluate the experiments and
results reported in the previous section. We discuss our
approach and our management of the test suite.

6.1 PhaselLength

The results in the previous section did not relate the amount
of phased behavior to phase length present in individual
branches. In terms of individual branches, we define phase
length as the number of executions an individual branches
stays biased towards taken, not taken, or stays not biased to-
wards either direction. Since phase length is not considered
for the results obtained in the previous section, we can not
tell whether the phases described in the graphs in Figure 7
take up a significant portion of a branch’s execution. The
only thing we can say is that each phase within a branch has
a length of at least the granularity size. For example, the
graph in Figure 7a shows that about 20% of the branches in
the deltablue benchmark have more than one phase. Even
though 20% of the branches have phases, the phases con-
tained in these phased branches might take up less than
1% of each of these branches’ executions. Also, discrep-
ancies between the phase length of branches that execute
very little versus branches that execute for long periods of
time would help determine which branches of a program a
compiler could best spend its time analyzing for phased be-
havior.

6.2 Changesin Input

In general the input for each program was held constant. We
looked for changes in individual branch phases for a given
input. Our results could be specific to the given input we
use. Recent research indicates that for certain programs the
paths within the program could vary dramatically due to
small changes in the input[?] which may suggest that our
results may not say much about the general behavior of the
programs we studied. Looking at the graph in Figure 8 we
can see that the percentage of branches with phases and
the amount of phases per branch seems to vary based on
changes in the input. More conclusive results possibly could
be obtained by looking at changes in phased behavior due
to differences in input. Maybe this can be achieved by com-
paring profiles for different inputs and mapping back the
differences in paths to the source programs(?; ?].

6.3 More RealisticPrograms

The programs we used to analyze phased branch behavior
are relatively small programs. These programs may not be
representative of conventional desktop programs. More ap-
plicable results might be obtained using Etch[?] to obtain
conditional branch traces of Microsoft Office and Netscape
on Win32 machines.

Also, each benchmark ran for a relatively small amount of
time. We may not have adequately tested each benchmark.
We used rather small input data sets. Larger input data
may needed for accurate results.

6.4 ProgramPhased/ersusindividual Branch
Phases

We analyzed each branch in isolation from other branches
and then tried to reason about the overall behavior of C++
programs. We did not look at how the phases of one branch
affects the phases of another branch, so our results may not
say much about overall program behavior. Our results are
limited to describing the amount of phases present in each
C++ benchmark we used. It would be interesting to see
whether a series of branches are biased towards taken for a
period of time and not taken for another period similar to
work being done by Sherwood and Calder[?].

7. RELATED WORK

In this section, we overview the research that relates to pro-
gram optimizations, phases and the use of profiling.

7.1 The DecoProjectat Harvard and Hewlett
Packard’s Dynamo

The Deco project[?] at Harvard University and Hewlett
Packard’s Dynamo[?] are feedback-direct optimization sys-
tems which attempt to create executables which can adapt
to their run-time environment. Each system uses a differ-
ent mechanism for detecting changes in phase. The current
prototype of Deco records Ball and Larus acyclic paths[?]
and stores them in a hash table(profile table). An execution
count is maintained for each entry in the hash table. Deco
uses an interrupt mechanism to examine the hash table and
determine which path to optimize based on a threshold ex-
ecution count. Each optimized piece of code is put into a
fixed sized optimization cache. After the hash table is exam-
ined, each entry’s execution count is zeroed. If the cache is
full, a random entry is evicted in order to deal with program
phases.

Dynamo uses an heuristic called MRET(Most Recently Ex-
ecuted Tail)[?] for identifying hot traces. Within Dynamo
backward taken branches represent the end of a trace. The
target addresses of these branches identify the start of new
traces. An execution count is associated with each of these
target addresses. If this execution count exceeds some thresh-
old value, dynamo begins to record the instruction stream
until another backwards taken branch is encountered. The

1000

% of branches that execute >

500

% of branches that execute >

% of branches execute >= 100

phased behavior for individual branches phased behavior for individual branches

100% 100%

%% %%

1000

—e— deltablue —+— deltablue

—=—gon —=—8on
—aidl ——idl

0% e idraw 90% draw
——lcom lcom

—e—richards o richards

% of branches that execute >

85% 85%

B0% 80%

] 100 200 300 400 500 600 700
numhber of phases number of phases
A) B)
phased behavior for individual branches phased behavior for individual branches

100% 100%

95% 95%

= 500

—+— deltablue —e— deltablue

—aean —=eon
il il

0% —idraw 0% s idraw
—e—loom —eloom

——richards —e—richards

% of branches that execute >

B85% B85%

80% 80%

a 10 2 Ell 40 50 &0 70 & Y| 100 a 100 2m 30 400 500 500 700 800 900
number of phases number of phases
C) D)
phased behavior for individual branches phased behavior for individual branches
100% 100%

95% 95%

90% 90%

e
g
i
A
—+— deltablue H] —+— deltablue
85% e g 85% —a—eon
—a—idl H —idl
—se— idraw E —se—idraw
a0% ——lcom S oo ——lcom
—a—richards g —a—richards
s
£

9% 75%

0% 70%

65%

o
=]

20 30 40 50 60 70 80 90 o0 0 10 20 30
number of phases

E) F)

40 50 60 70 80 90 o0
numker of phases

Figure 7: Results. Each of these cumulative distribution graphs plots the number of phases versus the percentage of branches
that execute at least as much as the sample size. The plots on the left zoom in on the corresponding graph on the right in
order to view the differences in phased behavior at x=1. A-B) Graph at a granularity of 1000. C-D) Graph at a granularity
of 500. E-F) Graph at a granularity of 100.

10

phase behavior for individual branches in the deltablue benchmark

105%

100% &

o

95% r

—+— 1000
—=— 5000
—i— 10000

90% j

—— 25000
—— 50000
—s— 100000
—— 75000

B5%

% of branches that execute >= 1000

80%

8%

30

40 a0 60

number of phases

Figure 8: Changes in Phased Behavior Due to Input Changes. The graph shows the changes in the percentage of branches
that exhibit phased behavior due to changes in input. Each of the inputs represent the number of constraints the deltablue
program must solve. The percentage of branches that demonstrate phased behavior ranges from 14% to 24specified. Also the
amount of phases present for each branch ranges from 7 to 57.

reason for using the target of backwards branches as iden-
tifies for hot traces is if the target of a backwards branch
is hot than it is also likely that the instructions following
the branch target are also hot. The trace is optimized and
placed into a cache indexed by the target address that starts
the trace. Subsequent encounters of the target address re-
sult in hits to the cache. The target address is replaced
by the address of the optimized trace. Once the trace ends
control is returned to the Dynamo interpreter which starts
the tracing process again. To adapt to changes in phase,
Dynamo flushes the trace cache whenever the rate of trace
creation surpasses some threshold value. This flushing strat-
egy attempts to readjust optimizations to changes in branch
phase.

7.2 Time Varying Behavior

Sherwood and Calder looked at phases of program behavior
that vary over time[?]. They looked at how the instructions
executed per cycle, branch prediction rates, address predic-
tion rates, cache miss rates, and value prediction rates influ-
ence each other and change over the lifetime of the SPEC95
benchmark suite. They used the SimpleScalar[?] simulator
to record statistics for every 100 million committed instruc-
tions. Each point (for each 100 million instructions commit-
ted) obtained was graphed to view trends over time and to

11

look for cyclic behavior. The cyclic behavior of the SPEC95
benchmarks was used to reduce the amount of time needed
to get an accurate picture of program behavior. The graph
was used to determine the length of a program cycle.

7.3 Adaptive Parallelism

Even though adaptive loop transformations for parallel com-
putations can provide significant performance speedups, ex-
isting adaptive techniques waste processor resources. For a
particular parallel computation speedups gained by adding
more processors could level off or possibly decrease. Hall and
Martonosi showed that the behavior of some loops from the
Specfp95 and NAS benchmark suites may go through phases
where there may be insufficient levels of parallelism so ad-
ditional processors may not help improve performance[?].
In some cases a serialized version of a loop might perform
better.

Hall and Martonosi developed an extension for the SUIF
parallelizing compiler which dynamically adjusts the num-
ber of threads allocated to a particular program based the
program making effective use of the number of threads allo-
cated to it[?]. They were able to improve workload perfor-
mance by up to 33% over non-adaptive techniques.

8. FUTURE WORK

In this section we describe directions for future work and
evaluate our results in the light of our original goals.

8.1 RelationshipsBetweenBranch Phasesand
Branch Prediction

One of the original aims of this work was to examine the re-
lationships between branch miss-prediction rates and branch
phase. We wanted to see the affect different levels of bias
within a branch phase has on the miss-prediction rate of a
simple two bit predictor versus more complicated predictors
such as correlated or bimodal predictors. For example if a
branch is highly biased towards taken or not taken, a simple
two bit predictor may be sufficient. Also if a branch is not
biased towards taken or not taken, a complicated predictor
may not provide a sufficient correct prediction rate to jus-
tify its use over a simpler predictor. We wanted to look at
phases for individual branches and try to understand their
relationship to phases that branch predictors go through.
Our conjecture was individual branches would exhibit a high
miss-prediction rate while in a phases where the branch is
not biased towards taken or not taken. Looking at Fig-
ure 9, it seems that the miss-prediction rate increases when
a branch changes phases, not necessarily when a branch is
not highly biased in the taken or not taken direction.

8.2 Mapping the Phasego Their Correspond-
ing Branches

At the present, we just record the amount of phases for
a given granularity size that a particular branch has. We
don’t really know what constructs or portions within the
C++ benchmarks are responsible for the branches with a
significant amount of phased behavior. Shade is distributed
with the SpixTools[?] which can be used to map traced
instructions back to the instruction’s source code. We can
use these tools to map the phased found using the analyzer
to the actual programming constructs within each of the
benchmarks. The information obtained could be useful to
compiler writers and computer architects for determining
what constructs are important to monitor in order to detect
changes in branch phase.

8.3 Addressand Value Prediction

Researchers have also shown that phased behavior also oc-
curs with instructions that access memory[?; ?]. A partic-
ular load or store operation might use the same address or
value for one period of time and switch to a different address
or value for another period of time. It would be interesting
to analyze the amount of phased address or value behavior
present in the C++ benchmarks. Also, looking at the re-
lationships between load/store and branch behavior might
help in understanding C++ program behavior.

12

9. CONCLUSIONS

We investigated the impact of phased behavior on various
C++ benchmarks. We show that the conditional branches
within the C++ benchmarks exhibit a significant amount of
phased behavior. We observed a mean percentage of phased
behavior of 13% at a granularity of 1000, 13.7% at a gran-
ularity of 500, and 17% at a granularity of 100. We believe
this indicates a great deal of opportunity for an optimizer
that can exploit path profiling. We have described tech-
niques to improve the accuracy of our work, as well as ap-
proaches to extend the work for analyzing phased behavior
in conditional branches.

taken bias versus miss prediction rate
100%

—cammpled taken bias
an ===gampled miss prediction rate
average miss prediction rate

B0%

0%

&0%

a0%

40%

" taken or missed

30%

20%

10%

0%
0 2000 4000 6000 8000 10000 12000
ith branch execution

Figure 9: Phases in Branch Predictors. This is a branch(same branch used in Figure 1) taken from the lcom benchmark. This
graph shows changes in phase of a branch relative to changes in the miss prediction rate of a simple binary 2 bit predictor.

13

