
Automated Validation of Class Invariants
In C ++ Applications

Tanton H. Gibbs, Brian A Malloy James F. Power
Computer Science Department Computer Science Department

Clemson University National University of Ireland
Clemson, SC 29634 Maynooth, Co. Kildare

USA. Ireland
{thgibbs,malloy }@cs.clemson.edu James.Power@may.ie

Abstract

In this paper, we describe a non-invasive approach
for validation of class invariants in C++ applications.
Our approach is fully automated so that the user need
only supply the class invariants for each class hierar-
chy to be checked and our validator constructs anIn-
variantVisitor, a variation of the Visitor Pattern, and an
InvariantFacilitator. Instantiations of theInvariantVisi-
tor and InvariantFacilitatorclasses encapsulate the in-
variants in C++ statements and facilitate the validation
of the invariants. We describe both our approach and
our results of validating invariants inkeystone, a well
tested parser front-end for C++ .

1 Introduction

The current focus in the software industry is to im-
prove the quality rather than the speed or size of an ap-
plication. A report by the Workshop on Strategic Di-
rections in Software Quality asserts that software quality
will become the dominant success criterion in the soft-
ware industry [23]. One process that supports software
quality is testing, which exercises the software to gather
information about the software. However, studies indi-
cate that testing consumes more than fifty percent of the
cost of software development, with some estimates plac-
ing the cost even higher [12].

An alternative to testing that promises to improve
software quality isDesign by Contract, which advocates
establishing and checking assertions about the attributes
of a class. Design by Contract was originally advo-

cated by Alan Turing [15], further developed by Hoare
[13, 14], Floyd [8] and Dijkstra [7] and made popular in
the Eiffel language [22]. However, Eiffel has not gar-
nered the wide acceptance of other object-oriented lan-
guages such as C++ and Java. Nevertheless, the impor-
tance of the Design by Contract approach is noteworthy,
and one of the hypotheses of our work is that the Design
by Contract approach may complement software testing
by exposing errors that are not found by implementation-
based or specification-based testing.

In this paper, we describe a non-invasive approach for
validation of class invariants in C++ applications. We use
the Object Constraint Language (OCL) to specify the in-
variants but our approach is amenable to other specifi-
cation languages such as Z [28], Object-Z [27] or VDM
[17]. Our approach is fully automated so that the user
need only supply the class invariants for each class hier-
archy to be checked and our validator constructs anIn-
variantVisitor, a variation of the Visitor Pattern [2, 21],
and anInvariantFacilitator. Instantiations of theInvari-
antVisitor and InvariantFacilitator classes encapsulate
the invariants in C++ statements and facilitate the vali-
dation of the invariants. We describe both our approach
and our results of validating invariants inkeystone, a well
tested parser front-end for C++ [20, 24, 25].

In the next section we provide background about the
Visitor pattern, class invariants, OCL andkeystone. In
Section 3, we overview our approach including a de-
scription of theInvariantVisitorand theInvariantFacili-
tator classes. In Section 4 we describe our incorporation
of invariant validation intokeystone, and in Section 5 we
benchmark our validator and provide interesting insights
into the validation ofkeystone. In Section 6 we review
related work and in Section 7 we draw conclusions.

Proceedings of the 17th IEEE International Conference on Automated Software Engineering, ASE’02

��
�
��
�

���
�

PDFVisitorCircle Rectangle

virtual void moveTO(int, int) = 0

virtual ~Shape() = 0

VisitorShape
virtual void draw() = 0

virtual void visit(Circle *) = 0

virtual ~Visitor() = 0

virtual void visit(Shape *) = 0

virtual void accept(Visitor *) = 0
virtual void visit(Rectangle*) = 0

void accept(Visitor *v)

int x, y, width, heightint x, y, radius

void accept(Visitor *v)

XMLVisitor
void visit(Circle *c) {

PSVisitor

// make XML version
// of circle }

virtual int area() = 0

1 0..*visitsaccepts

{ v−>visit(this); } { v−>visit(this); }

Figure 1. The Visitor Pattern. The Visitor pattern consists of two inheritance hierarchies, an element
hierarchy, illustrated on the left by the Shapehierarchy, and a Visitor hierarchy, illustrated on the
right.

2 Background

To facilitate automation of invariant validation, we
exploit a variation of the Visitor pattern, the Acyclic Vis-
itor [2, 21], which we describe in Section 3. In this sec-
tion we first describe the Visitor pattern [9, 30], and then
provide background about invariants and the object con-
straint language, OCL. We conclude this section with
an overview ofkeystone, an application that provides a
parser front-end for the ISO C++ language; we usekey-
stoneas our case study in Sections 4 and 5.

2.1 The Visitor Pattern

The Visitor pattern permits the designer of a class hi-
erarchy to add functionality without “polluting” the hier-
archy with unrelated operations [9]. The Visitor pattern
can also be used to obviatedown castingby enabling op-
erations that depend on the concrete classes [30]. These
class dependent operations, as well as additional opera-
tions, can be added to an existing class hierarchy without
modifying the classes in the hierarchy.

The Visitor pattern consists of two inheritance hierar-
chies, anelement hierarchyand aVisitor hierarchy. We
use the familiarShape example [2, 9, 22, 29] as our el-
ement hierarchy, illustrated on the left of Figure 1, and
a Visitor hierarchy illustrated on the right of the figure.
The Shape hierarchy consists of an abstract base class
with five methods and two derived classes for special-
izing Shape. Four of the five methods in classShape
represent typical operations that one might perform on
all shapes, such as drawing, moving, finding the area or
deleting aShape. The fifth method isaccept(Visitor
*), which permits a visitor object to visit a particular el-
ement.

An instantiation of a particular visitor encapsulates
additional functionality to augment the functionality al-
ready in theShape hierarchy. When an instance of a
class derived fromShape callsvisit on the visitor object,
the instance effectively identifies its type to the visitor.
The visitor operation that is called can perform what-
ever action is appropriate for the particular instance. For
example, an instance ofXMLVisitor can build an XML
representation of aCircle, as illustrated by theXMLVis-
itor class shown on the right side of Figure 1.

2.2 Class invariants

An invariant on a classC is a set of Boolean con-
ditions or predicates that every instance ofC will sat-
isfy after instantiation (i.e., after constructor invocation)
and before and after every method invocation by an-
other object [22]. A class invariant is a property of a
class instance that must be preserved by all methods of
the class. In spite of its name, an invariant is not re-
quired to hold at all execution points. For example, a
method might violate the invariant while working toward
its goal; however, the invariant must be re-established
before the method terminates execution.

Class invariants are used to ensure that the operations
performed on instances of the class maintain the integrity
constraints of the class. These constraints are described
in terms of the member functions and data attributes of
the class.

2.3 The Object Constraint Language (OCL)

A Unified Modeling Language (UML) diagram, such
as a class diagram, provides a high level of program

name : String
kind : Kind
containedIn : Scope

uses in
search

class, enum, function,
label, namespace,
variable, typedef

returns

builds

looks for

<<use>>

<<use>>

<<subsystem>>

<<subsystem>>

name : String
hasQualifier : Boolean
specifiedAs: OccurSpecifier
ignoreUsings : Boolean

<<enumeration>>

convFunction, destructor,
destructorQualifier,
elabEnum, elabClass,
label, namespace,
pseudoDestructor,
qualifier, typename

OccurSpecifier

<<enumeration>>

Kind

NameDeclaration
Scope

Type

NameOccurrence

Symbol Table

Scanner

Parser

Program Processor

Figure 2. Keystone summary. The Program Processor subsystem, illustrated on the left, is respon-
sible for directing symbol table construction and name lookup. The Program Processor marshals
information about the name in a NameOccurrence object and directs the search for a correspond-
ing NameDeclaration in the Symbol Table subsystem, illustrated on the right.

abstraction [4]. These UML diagrams are not refined
enough to describe low-level aspects of a specification,
such as invariant conditions that must hold for instances
of objects in the system. The Object Constraint language
(OCL) is a formal language used to describe expressions
on models specified in the Unified Modeling Language
(UML) [3, 34]. These expressions typically specify in-
variant conditions that must hold for the system being
modeled, or queries over objects described in a model.
OCL expressions, when evaluated, do not have side ef-
fects, so their evaluation cannot alter the state of the cor-
responding executing system even though an OCL ex-
pression can be used to specify a state change. OCL
expressions allow the modeler to express invariants in a
language independent manner.

2.4 The keystone parser front-end

Figure 2 summarizes the design of our case study ap-
plication, a parser front-end for ISO C++ [16]. The fig-
ure presents two subsystems, illustrated as tabbed folders
and designated by the�subsystem� stereotype. The
Program Processor subsystem is shown on the left and
the Symbol Table subsystem is shown on the right of
Figure 2.

The Program Processor subsystem includes a
Scanner and Parser and is responsible for initiat-

ing and directing symbol table construction and name
lookup. This responsibility includes two phases: (1)
assembling the necessary information for creation of a
NameOccurrence object, and (2) directing the search
for a correspondingNameDeclaration object in the
Symbol Table subsystem. TheSymbol Table subsys-
tem is the symbol table in the parser, including class hi-
erarchies for type information,Type, and scope informa-
tion, Scope, shown on the right of Figure 2. TheSym-
bol Table subsystem, the target of our validation effort,
is discussed further in Section 4.

3 Overview of the Technique

In this section, we use theShape example from Sec-
tion 2 to illustrate our approach for automating valida-
tion of class invariants. We begin with an overview of
the approach and in Section 3.2 we list some sample in-
variants in OCL for theShape example. In Sections
3.3 and 3.4 we describe theInvariantVisitor andInvari-
antFacilitator classes that are automatically generated in
our system.

3.1 The validator system

Figure 3 provides an overview of our validator, with
input to the system shown on the left and output shown

ShapeInvariantVisitor

for
OCL

OCL Invariants

C++ code

Shape hierarchy

for Shape
hierarchy

Class
Diagram
for Shape
hierarchy

Classes in Shape Hierarchy
Translater

ShapeInvariantFacilitator

staic vector<ShapeInvariantFacilitator *> mylist

void checkInvariants()

void accept(Visitor *)
static void checkAllObjectsInvariants()

void visit(Circle *)
void visit(Rectangle *)

Figure 3. System overview. This figure illustrates the central module in our validator, the OCL
Translator, which takes an OCL specification of the invariants for a class hierarchy and produces
two classes as output, a facilitator class and a visitor class. These classes are listed in Figures
4 and 6, and explained in Section 3.

on the right of the figure. The central module is the
OCL Translator, shown in the center of the figure. Our
OCL Translator is a recursive-descent parser for OCL,
with semantic actions inserted into the parse to con-
struct theShapeInvariantFacilitator and theShapeIn-
variantVisitor classes, shown on the right of the figure.

The only modification required in the class hierarchy
under validation is to make theShapeInvariantFacili-
tator a super class. An instantiation ofShapeInvari-
antFacilitator implements the Acyclic Visitor pattern,
which we discuss later in this section.

OCL expressions are specified in terms of a UML mo-
del, including the attributes and associations of a class.
Our choice of OCL as our specification language enables
us to reuse our design artifacts to express invariants on
the classes in our system. The invariants that we report
in this paper are extracted from our C++ code; however,
as we extend our target application, we expect that our
invariants may also be part of the design of the system.
These two options are illustrated on the left of Figure 3.

1 context Circle
2 inv: self.Area() = PI * self.Radius() *
3 self.Radius()
4 inv: self.Diameter() = 2 * self.Radius()

5 context Rectangle
6 inv: self.Area() = self.Width() * self.Height()

Figure 4. OCL invariants for Shape

3.2 Invariants for Shape

To provide a flavor of the OCL expressions, we illus-
trate the invariants for theShape hierarchy in Figure 4.
The phrasecontext Circle on line one in the figure pro-
vides the context in which the invariants on lines 2–4 are
applied. The invariant on lines 2–3 of the figure is an
assertion about the area of aCircle and the invariant on
line four is an assertion about the diameter of aCircle.
Similarly for theRectangle on lines five and six of the
figure.

1 class ShapeInvariantVisitor : public Visitor {
2 virtual void visit(const Circle* self) {
3 assert(self->Area() == PI*self->Radius()*
4 self->Radius());
5 assert(self->Diameter() == 2*self-

>Radius()*
6 }
7 virtual void visit(const Rectangle* self) {
8 assert(self->Area() == self->Width() *
9 self->Length());

10 }
11 };

Figure 5. The Visitor class

3.3 The invariant visitor

Figure 5 presents theShapeInvariantVisitor that is
generated by our OCL translator for the invariants listed
in Figure 4. Each invariant is implemented as an asser-
tion, shown on lines 3, 5 and 8 of the figure. Our OCL

1 class ShapeInvariantFacilitator {
2 public:
3 ShapeInvariantFacilitator() {
4 s ptrs.push back(this);
5 }
6 virtual ˜ShapeInvariantFacilitator() { }
7 void checkInvariants() const {
8 ShapeInvariantVisitor visitor;
9 accept(&visitor);

10 }
11 static void checkAllClassesInvariants() {
12 ShapeInvariantVisitor visitor;
13 std::for each(s ptrs.begin(),
14 s ptrs.end(), std::mem fun(
15 &ShapeInvariantFacilitator::checkInvariants
16));
17 }
18 private:
19 virtual void accept(Visitor*) const;
20 static std::vector<ShapeInvariantFacilitator*>
21 s ptrs;
22 };
23 void ShapeInvariantFacilitator::accept(
24 Visitor* v) const {
25 if (const Rectangle* self =
26 dynamic cast<const Rectangle*>(this)) {
27 v->visit(self);
28 }
29 if (const Circle* self =
30 dynamic cast<const Circle*>(this)) {
31 v->visit(self);
32 }
33 }

Figure 6. The Facilitator class

translator uses the Perl Parse::RecDescent module, to-
gether with an OCL grammar to automatically translate
the OCL into C++.

3.4 InvariantFacilitator: an Acyclic Visitor

Our translator generates anInvariantFacilitator for
each class hierarchy under consideration, which accom-
plishes several tasks. First, theInvariantFacilitator in-
cludes a method to check the invariants for the current
object, illustrated ascheckInvariants() on lines 7–10
of Figure 6. Second, theInvariantFacilitator includes
a method,checkAllClassesInvariants(), lines 11–17,
that iterates through the static vector of objects, shown
on lines 20–21 of the figure. Using thecheckAllClass-
esInvariants() method, the user may check the invari-
ants for a class hierarchy at various points during pro-
gram execution. Finally, theInvariantFacilitator in-
cludes methodaccept(), shown on lines 23–33 of Figure
6, which obviates the inclusion of anaccept method in

each class in the hierarchy under validation. Moreover,
thisaccept method uses dynamic type information to re-
move the cyclic nature of the classic Visitor pattern [9].
Thus, theInvariantFacilitator implements the Acyclic
Visitor.

4 Validation in Keystone

In this section, we describe our validation ofkeystone.
We begin with a description of the class hierarchies that
we validated and motivate the importance of automating
the validation process. In Sections 4.2 and 4.3, we de-
scribe the symbol table and some of the invariants on the
symbol table forkeystone.

4.1 The Keystone Hierarchies

In Section 2.4 we overviewed the structure ofkey-
stoneincluding theProgram Processor and theSym-
bol Table subsystems.Keystoneis a research project
whose goal is the design and implementation of a parser
front-end that will parse the language described by the
ISO C++ standard [16], including an implementation of
name lookup.Name lookupis the process of finding, for
each occurrence of a name in a program, the correspond-
ing declaration of that name. Thus, the more important
of the keystonesubsystems is theSymbol Table sub-
system, where names are stored as instances ofScope
or NameDeclaration, and there may be aType asso-
ciated with a name. TheNameDeclaration, Type and
Scope classes are illustrated in Figure 2 and details of
theScope hierarchy are illustrated in Figure 7.

Figure 7 shows a base class,Scope, and five derived
classes for some of the specializations ofScope that can
occur in a C++ program. The most notable omission from
the Scope hierarchy is a specialization fortemplate
scope. Our ongoing work includes the incorporation of
templates into thekeystonefront-end. These prospec-
tive changes underscore the importance of automatically
validating invariants because, askeystoneevolves, ad-
ditional invariants will be incorporated into the system,
and some existing invariants may be updated. The auto-
mated generation of theInvariantVisitor andInvariant-
Facilitator classes from the OCL specification facilitate
repeated validation of the invariants as well as the main-
tenance of consistency of the implementation with the
specification. Our case study entailed validation of the
NameDeclaration, Type andScope hierarchies.

globalScope : NamespaceScope

uses

1

0..*

Section 3.3.5

−− for lables only

Section 3.3.4

− local variables

Section 3.3.2

1

0..*

Section 3.3.6

derivedFrom

contains

+ lookup(n:NameOccurrence) : list<NameDeclaration>

findHere(n:NameOccurrence) : NameDeclaration

{abstract}

1
containedIn

<<instanceOf>>

1 0..*

Section 3.3.3

−− for parameters in
function prototypes

NamespaceScope

FunctionScope

LocalScope

ClassScope

NameDeclaration
Scope

PrototypeScope

Figure 7. Class Diagram for the Scopes Hierarchy. Each Scope object contains a list of NameDeclaration
instances, along with name lookup functionality. The Scope class has six subclasses, as detailed
in the referenced sections of the ISO standard.

4.2 The Keystone Symbol Table

One of the characteristics ofkeystoneis that once a
name is installed in the symbol table, the typical op-
eration on that name is lookup and other query opera-
tions. Once installed in the symbol table, instantiations
of NameDeclaration, Scope and Type are generally
not modified, except for an occasional back-patching of
type information for class attributes.

Thus, we validatekeystoneinvariants at the end of the
parse of an input program. This entails placing a call
in main() to the functioncheckAllClassesIn-
variants in the InvariantFacilitator class
of each inheritance hierarchy being validated (see Fig-
ure 6). This call can be placed anywhere in the code;
however, withkeystone, we only validate invariants at
the end of the program.

An alternative to validating invariants at the end of
the program is to validate invariants (1) after the exe-
cution of the body of a constructor, (2) before the ex-
ecution of the body of a destructor, (3) as part of the
pre-conditions of a method, and (4) as part of the post-
conditions of a method. Given the stability of objects
in the keystonesymbol table, we are able to obtain as-
surance about invariants through validation at program
termination. However, our non-invasive approach does
not easily extend to applications whose objects are not
stable, but are created and destroyed during program ex-
ecution.

1 context Scope
2 inv: self.getDecl() <> NULL implies
3 self.getDecl().getCorrespondingScope() = self
4 inv: self.getContainingScope() <> NULL xor
5 self.getName() = " GlobalNamespace"
6 inv: self.getLocals()-> forAll(
7 n:NameDeclaration |
8 n.getContainingScope() = self)

9 context ClassScope
10 inv: self.getLocals()-> forAll(
11 n:NameDeclaration
12 | n.getType() <> Type::namespaceType)
13 inv:
14 self->getContainingScope().oclIsTypeOf(NamespaceScope)
15 or self->getContainingScope().oclIsTypeOf(ClassScope)
16 or self->getContainingScope().oclIsTypeOf(LocalScope)

Figure 8. Invariants: Scope & ClassScope

4.3 OCL Invariants for Scope Hierarchy

Figure 8 provides some invariants for theScope and
ClassScope classes inkeystone. The invariants for
ClassScope are the conjunction of its invariants and
the invariants of the parent,Scope. The invariant on
line 2 of Figure 8 states that if theNameDeclaration
for the current scope is not NULL, then the correspond-
ing scope of theNameDeclaration is self, the current
scope. Since no C++ class can contain a namespace, line
10 states that none of theNameDeclaration objects in
the current class scope may be namespaces. This in-
variant uses the OCLforAll construct, which requires

Test case lines classes classes
w/ fns

encrypt 946 1 1
Clause 3 952 40 34
php2cpp 1,920 6 6

fft 2,238 51 36
graphdraw 4,354 199 76
ep matrix 4,944 78 51
taxonomy 5,322 573 471

vkey 8,556 279 44

Figure 9. Test suite.

that our translator generate a function containing afor
loop that iterates through thevector of NameDeclara-
tion objects local to the class scope.

5 Results

In this section we describe the results of our study of
automated validation of class invariants. The target ap-
plication for our study iskeystone[20, 24, 25], a parser
front-end for the ISO C++ language [16]. The validator
was executed on a Dell Precision 530 workstation with
a Xeon 1.7 GHz processor equipped with 512 MB of
RDRAM, running the Red Hat Linux 7.1 operating sys-
tem. Our implementation languages were C++ [29] and
Perl [32], compiled with GNUgccversion 2.96 and the
Perl interpreter version 5.6.0. In the next section we de-
scribe the test suite for the study and in Section 5.2 we
measure the number of objects for which invariants were
validated as well as the number of invariants executed.
In Section 5.3 we describe the impact on performance
due to the invariant checking and, in 5.4 we present the
improvement inkeystonethrough invariant validation.

5.1 The test suite

The table in Figure 9 summarizes our suite of eight
test cases, listed in the rows of the table asencrypt,
Clause 3, php2cpp, fft, graphdraw, ep matrix, vkey
and thetaxonomy testsuite. The test cases in the suite
were chosen because of their range and variety of appli-
cation; they are listed in sorted order by number of lines
of code, not including comments or blank lines. We note
that keystone had been previously tested using this same
test suite and was thought to run successfully.

Test caseencrypt is an encryption program that uses
the Vignere algorithm [1] andClause 3 is a sequence

of examples taken from Clause 3 of the ISO C++ stan-
dard [16]. Thephp2cpp test case converts the PHP
web publishing language to C++ [5] andfft performs fast
Fourier transforms [18].graphdraw is a drawing ap-
plication that usesIV Tools [31], a suite of free XWin-
dows drawing editors for Postscript, TeX and web graph-
ics production. Theep matrix test case is an extended
precision matrix application that usesNTL, a high per-
formance portable C++ number theory library [26].vkey
is a GUI application that uses theV GUI library [33],
a multi-platform C++ graphical interface framework to
facilitate construction of GUI applications. Thetaxon-
omy testsuite is a validation suite for a taxonomy that
describes classes in object oriented languages [6].

The columns of the table in Figure 9 list details about
the number of lines of code, not including comments or
blank lines, the number of classes, and the number of
classes with functions for each of the test cases. All of
the test cases are complete applications, exceptClause
3 andtaxonomy, and three use large libraries:ep ma-
trix, vkey andgraphdraw use theNTL, V GUI and IV
Toolslibraries respectively.

5.2 Number of objects and invariants checked

Figure 10 summarizes the number of objects and in-
variants that are checked duringkeystone’s parsing of
the test suite. The rows of the table list the test cases
and the columns list the data acquired by monitoring the
InvariantFacilitators. The columns labeledScope Ob-
jects, Type ObjectsandNameDeclaration Objectslist
the number of validated objects in the Scope, Type and
NameDeclaration hierarchies respectively. TheInvari-
ants column is a summation of the invariants validated
for all three hierarchies and shows that a large number
of invariants are checked for some of the test cases. For
example, thegraphdraw program, listed in the fifth row
of Figure 10, required 203,234 invariants to be validated.

5.3 Efficiency

In Section 4, we described options for placement of
invariant checks in applications and provided a rationale
for our evaluation of invariants at the end of the pro-
gram, saving all objects in a static vector local to the
facilitator class. Nevertheless, in view of the large num-
ber of invariants that are validated in some of the test
cases, such as thegraphdraw andep matrix programs,
we conducted some timings to measure the cost of our
automated approach.

Test case Scope Objects Type Objects NameDeclaration Objects Invariants

encrypt 634 1,769 1,534 21,445
Clause 3 430 1,436 653 10,132
php2cpp 570 2,021 2,229 29,909

fft 1,105 3,868 4,069 54,906
graphdraw 5,518 18,342 14,488 203,234
ep matrix 5,071 15,300 11,334 161,450
taxonomy 3,778 7,255 4,868 73,227

vkey 2,097 12,978 12,131 162,744

Figure 10. Results of Study. The rows of the table list the number of scope, type, and name
declaration objects validated for each test case. The final column summarizes the number of
invariants checked for each test case.

Figure 11. Cost of validation.

Figure 11 depicts running times for six of the eight
test cases. There is a pair of bars for each of the six
test cases timed, with the left bar of the pair represent-
ing the execution time including invariant validation, and
the right bar of the pair representing the execution time
without invariant validation. Theep matrix program re-
quired the longest execution time, using 13.33 seconds to
parse theep matrix program and validate the 161,450 in-
variants, and 13.26 seconds to parse the program without
validating invariants. All times were wall clock times.
We recorded twelve timings for each program, discarded
the lowest and highest value; the times in Figure 11 are
the averages of the ten remaining executions.

5.4 Impact of validation on keystone

Our goals in automating invariant validation are to
measure the cost of validation, to establish a level of
confidence in our software and to determine if the code

is consistent with our design documents. Before vali-
dation, we manually checkedkeystone’s behavior after
parsing each of the testsuite’s source files. However, we
found the manual check of class invariants to be time
consuming and error prone. By automating the invariant
validation inkeystone, we uncovered 11 previously un-
known errors, 5 were OCL errors that represented a mis-
match between the design and implementation ofkey-
stone, and 6 were implementation errors. The 5 OCL
errors were repaired during validation. For the 6 imple-
mentation errors, 3 were repaired during validation and
the remaining 3 have been placed in a database of known
errors.

The invariant inheritance rulestates that the invari-
ant of a class is theBooleanand of the invariant of the
class with the invariant of its parent, if the class has a
parent [22]. This rule raises the possibility of inconsis-
tency between the invariant of a class and its parent. We
found no inconsistencies in combining the invariants in
thekeystoneinheritance hierarchies.

Some of the invariants that we validated include vari-
ables whose values are stored in private data members.
Our keystoneapplication contains accessor methods for
all relevant private data attributes; this accessibility is re-
quired for successful application of our technique.

6 Related Work

In this section, we overview some of the work related
to invariant validation and support of Design by Contract
in C++; a more thorough overview can be found in refer-
ence [19]. This support falls into one of four categories:
(1) use the language constructs to provide support, (2)
use macros, (3) extend the syntax of the language and
implement the extensions through a pre-processor, and

(4) propose a language extension. Each of the categories
(2), (3) and (4) lacks the orthogonality of category (1),
and makes it difficult to separate the assertions from the
ordinary source code. In addition, (2) uses a mechanism
more properly reserved for conditional compilation and
deprecated in C++ for other purposes. Categories (3)
and (4) have the disadvantage of being non-standard ad-
ditions to C++, whereas the trend, at least since the pub-
lication of the ISO standard, has been towards conver-
gence between C++ dialects. Further, none of the cat-
egories (2), (3) or (4) can interact well with a source-
level debugger, since the C++ code being executed dif-
fers from the code written by the programmer. Our work
falls into the first category and the papers that we review
in this section describe approaches similar to ours.

Reference [19] presents an approach to emulating De-
sign by Contract in C++ that uses VDM-SL [17] as the
specification language. The approach represents an at-
tempt to address the shortcomings of a Graphical R-
Matrix Atomic Collision Environment (GRACE), which
makes extensive use of the Standard C++ Library (STL).
A library of STL “lookalikes” is constructed and users
of the system publicly derive thier STL containers from
the “lookalikes”. To validate invariants, the user writes
a function calledinv that contains the invariants and re-
turns a Boolean indicating whether or not the invariants
were satisfied. The technique is not automated.

Reference [10, 11] presents a framework for De-
sign by Contract that requires the programmer to supply
functions that check pre-conditions, post-conditions and
class invariants. The technique is intrusive and cannot be
automated without parsing and modifying the program.

7 Concluding Remarks

In this paper, we describe a non-invasive approach to
validation of class invariants for C++ applications. Our
case study ofkeystoneshows that our approach has min-
imal impact on the execution time ofkeystoneand there
are important benefits in validating invariants. First,
there are several kinds of errors that are exposed by our
approach. In particular, we are able to expose a mis-
match between the specification and the implementation.
Also, by validating invariants, we expose inconsistencies
in the code that currently do not produce incorrect out-
put. Second, our automated approach permits us to val-
idate many more invariants than one could reasonably
validate manually and to avoid errors that might result
from manual validation. Third, by automating the val-
idation we can generateInvariantVisitor and Invariant-
Facilitator classes for modified class hierarchies as well

as new hierarchies, so that validation becomes a mainte-
nance activity.

There are threats to both our approach and our case
study. First, in our approach, invariants are validated dy-
namically and the potential of the invariants to expose
errors is necessarily dependent on the coverage provided
by the test suite. If the test suite does not adequately
cover the code, than our invariant validation is weak-
ened. Second, our case study involved an application
whose objects, once created and installed in a symbol ta-
ble, remain relatively stable. For an application where
the objects in the system are frequently updated, the in-
variants must be validated more frequently with a corre-
sponding rise in the cost of validation.

Acknowledgement
We would like to thank the anonymous referees for their
helpful comments, which improved several sections of
our paper. Special thanks to Mary Jean Harrold, whose
insightful comments and suggestions greatly improved
the results and conclusions of our paper.

References

[1] S. Alexander. The C++ resources network.
http://www.cplusplus.com, October 2001.

[2] A. Alexandrescu.Modern C++ Design: Generic
Programming and Design Patterns Applied.
Addison-Wesley, 2001.

[3] Boldsoft, Rational Software Corp, IONA and
Adaptive Ltd. Response to the UML 2.0 OCL RfP.
Technical report, OMG Document ad/2002, March
1 2002.

[4] G. Booch, J. Rumbaugh, and I. Jacobson.The Uni-
fied Modeling Language User Guide. Object Tech-
nology Series. Addison-Wesley, 1999.

[5] F. J. Cavalier. Debugging PHP using a C++ com-
piler. Dr. Dobbs Journal, pages 42–46, March
2002.

[6] P. Clarke and B. A. Malloy. A unified approach to
implementation-based testing of classes. InPro-
ceedings of 1st Annual International Conference
on Computer and Information Science (ICIS ‘01),
Orlando, Florida, USA, October 3-5 2001.

[7] E. W. Dijkstra.A Discipline of Programming. Pren-
tice Hall, 1976.

[8] R. Floyd. Assigning Meanings to Programs.Pro-
ceedings of American Mathematical Society Sym-
posium on Applied Mathematics, 19:19–31, 1967.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[10] P. Guerreiro. Another mediocre assertion mecha-
nism for C++. InTechnology of Object-Oriented
Languages and Systems, pages 226–237, St. Malo,
France, June 2000.

[11] P. Guerreiro. Simple support for design by contract
in C++. In Technology of Object-Oriented Lan-
guages and Systems, pages 24–34, Santa Barbara,
CA, USA, August 2001.

[12] M. J. Harrold. Testing: A roadmap.Proceedings
of the International Conference on Software Engi-
neering, June 2000.

[13] C. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576–583, February 1969.

[14] C. Hoare. Proof of correctness of data representa-
tions. Acta Informatica, 1:271–281, 1972.

[15] C. Hoare. The Emperor’s Old Clothes (1980 Tur-
ing Award Lecture).Communications of the ACM,
24(2):75–83, February 1981.

[16] ISO/IEC JTC 1.International Standard: Program-
ming Languages - C++ . Number 14882:1998(E) in
ASC X3. ANSI, first edition, September 1998.

[17] C. Jones.Systematic Software Development using
VDM. Prentice Hall, second edition, 1990.

[18] O. Kiselyov. Fast Fourier transform.Free C/C++
Sources for Numerical Computation, March
2002. http://cliodhna.cop.uop.edu/˜ hetrick/c-
sources.html.

[19] D. Maley and I. Spence. Emulating design by con-
tract in C++. InTechnology of Object-Oriented
Languages and Systems, pages 66–75, Nancy,
France, June 1999.

[20] B. A. Malloy, T. H. Gibbs, and J. F. Power. Deco-
rating tokens to facilitate recognition of ambiguous
language constructs.submitted, pages 1–33, 2002.

[21] R. Martin. Acyclic visitor. Technical Report wucs-
97-07, Washington University Technical Report,
September 4–6 1996.

[22] B. Meyer.Object-Oriented Software Construction.
Prentice Hall PTR, second edition, 1997.

[23] L. J. Osterweil and et al. Strategic directions in
software quality.ACM Computing Surveys, 4:738–
750, December 1996.

[24] J. F. Power and B. A. Malloy. An approach for
modeling the name lookup problem in the C++
programming language. InACM Symposium on
Applied Computing, SAC’2000, pages 792–796,
Como, Italy, March 2000.

[25] J. F. Power and B. A. Malloy. Symbol table con-
struction and name lookup in iso C++. In Tech-
nology of Object-Oriented Languages and Systems,
TOOLS 2000, pages 57–68, Sydney, Australia,
November 2001.

[26] V. Shoup. Number theory library.
http://www.shoup.net/ntl/, March 2002.

[27] G. Smith. The Object-Z Specification Language.
Kluwer Academic Publishers, 2000.

[28] J. M. Spivey. Understanding Z, A Specification
Language and its Formal Semantics. Cambridge
University Press, 1992.

[29] B. Stroustrup.The C++ Programming Language.
Addison-Wesley, third edition, 1997.

[30] J. Vlissides. Pattern Hatching: Design Patterns
Applied. Addison-Wesley, 1998.

[31] J. M. Vlissides and M. A. Linton. IV tools.
http://www.vectaport.com/ivtools/, March 2002.

[32] L. Wall, T. Christiansen, and J. Orwant.Program-
ming Perl: Third Edition. O’Reilly & Associates,
third edition, 2000.

[33] B. Wampler. The V C++ GUI framework.
http://www.objectcentral.com, October 2001.

[34] J. Warmer and A. Kleppe.The Object Constraint
Language, Precise Modeling with UML. Addison-
Wesley, first edition, 1999.

