CPSC 4040/6040
Computer Graphics
Images

Joshua Levine
levinej@clemson.edu
Agenda

- Q05 Posted Tonight
- PA06/PA07 questions?
Why Panoramas?

• Are you getting the whole picture?

• Compact Camera FOV = 50 x 35°

• Human FOV = 200 x 135°

• Panoramic Mosaic = 360 x 180°
Panoramas: Stitching Images Together
A Pencil of Rays Contains All Views

Can generate any synthetic camera view as long as it has **the same center of projection**!
Image Stitching Pipeline

- The user gives us 4 correspondences
- We reproject one image to match the other one
- Creates a wider angle view
For a pair of points \((x, y) -> (x', y')\) we have

\[
\begin{pmatrix}
    a & b & c \\
    d & e & f \\
    g & h & i \\
\end{pmatrix}
\begin{pmatrix}
    y \\
    x \\
    1 \\
\end{pmatrix}
= \begin{pmatrix}
    y'w' \\
    x'w' \\
    w' \\
\end{pmatrix}
\]

\[w' = gy + hx + i\]

- For a pair of points \((x, y) -> (x', y')\) we have

\[
ay + bx + c = y'(gy + hx + i)
\]

\[
dy + ex + f = x'(gy + hx + i)
\]

- Unknowns: a, b, c, d, e, f, g, h, i
  - Linear!
Forming the matrix

\[ ay + bx + c = y'(gy + hx + i) \]
\[ dy + ex + f = x'(gy + hx + i) \]

\[
\begin{pmatrix}
    a & b & c & d & f & g & h & i \\
    y' & x' & 1 & 0 & 0 & 0 & -yy' & -xy' & -y' \\
    \vdots & \vdots \\
\end{pmatrix}
\begin{pmatrix}
    a \\
    b \\
    c \\
    d \\
    f \\
    g \\
    h \\
    i \\
\end{pmatrix} = 0
\]
Thinking Frequency
Salvador Dali
“Gala Contemplating the Mediterranean Sea, which at 20 meters becomes the portrait of Abraham Lincoln”, 1976
• What filter?
• What filter?
Domains

- Images can be represented in different domains
  - **Spatial domain** – the strength of light at points in space
  - **Frequency domain** – the strength of patterns within an image

- Frequency domain is useful for
  - Image analysis
  - Image compression
  - Efficient processing
Jean Baptiste Joseph Fourier (1768-1830)

Fourier’s Idea (1807):

“Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.”
Jean Baptiste Joseph Fourier (1768-1830)

- Challenged by a number of mathematicians:
  - Including: Laplace, Lagrange, Legendre
- Fourier’s idea was not even translated until 1878
- BUT, it’s mostly true
  - It’s called the Fourier Series
  - There are some subtle restrictions

http://www-history.mcs.st-and.ac.uk/Biographies/Fourier.html
Jean Baptiste Joseph Fourier (1768-1830)

• Challenged by a number of mathematicians:

•Including: Laplace, Lagrange, Legendre

• Fourier’s idea was not even translated until 1878

• BUT, it’s mostly true
  • It’s called the Fourier Series
  • There are some subtle restrictions

... the manner in which the author arrives at these equations is not exempt of difficulties and that his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.

http://www-history.mcs.st-and.ac.uk/Biographies/Fourier.html
Sinusoids \[ f(x) = A \sin(\omega x + \phi) \]

- A sinusoidal is characterized by the amplitude (A), frequency \( (\omega = 2\pi f) \), and phase (\( \phi \)).

\[ \lambda = \frac{c}{f} = \frac{2\pi c}{\omega} \]
Sums of Sinusoids
Functions into sinusoids

- Any function can be represented as the sum of sinusoids
- Consider a one-dimensional square wave.
- Can it be represented as the sum of ‘non-square waves’?
Decomposing functions into sinusoids

- Start with a sin wave of the same frequency as the square wave.
- This is the “base” or “fundamental” frequency.
Decomposing functions into sinusoids

- Add a 3rd “harmonic” (green) to the fundamental frequency
- The amplitude is less than the base and the frequency is 3 times that of the base.
Decomposing functions into sinusoids

- Add a 5th “harmonic” (blue) to the fundamental frequency
- The amplitude is less than the base and the frequency is 5 times that of the base.
Decomposing functions into sinusoids

- Add a 7th (black) and 9th (taupe) “harmonic” to the fundamental frequency
Decomposing functions into sinusoids

• Adding all harmonics up to the 100th
A Sum of Sines

- Our building block:
  - \( f(x) = A \sin(\omega x + \phi) \)

- Add enough of them to get any signal you want!

- How many degrees of freedom?

- What does each control?

- Which one encodes the coarse vs. fine structure of the signal?

\[
f(\text{target}) = f_1 + f_2 + f_3 + \ldots + f_n + \ldots
\]
Sinusoids (one-D) as Images

\[ f(x) = A \sin\left(\frac{2\pi u x}{N} + \phi\right) \]

Breakdown frequency by:
- N is the width of the image
- u controls number of cycles

Varying Amplitude
(a) \(u = 2, \phi = 0, a = 1\)
(b) \(u = 2, \phi = 0, a = .5\)
(c) \(u = 2, \phi = 0, a = 0\)

Varying Phase
(d) \(u = 2, \phi = 0, a = 1\)
(e) \(u = 2, \phi = \pi/4, a = 1\)
(f) \(u = 2, \phi = \pi/2, a = 1\)

Varying Frequency
(g) \(u = 2, \phi = 0, a = 1\)
(h) \(u = 3, \phi = 0, a = 1\)
(i) \(u = 4, \phi = 0, a = 1\)
Shannon-Nyquist Theorem
Discrete Sinusoid

- Consider an “image” of samples of some sinusoid.

- Take the continuous sinusoidal function into the discrete domain via sampling at $\frac{1}{2}$ unit intervals (“pixels”).

\[
f(x) = A * \sin \left( \frac{2\pi u}{N} (x + 1/2) + \phi \right) \quad x \in [0, N - 1]
\]

- One effect is to place an upper limit on the frequencies that can be captured via sampling.

- $u$ must be less than $N/2$ in order to be recoverable by the discrete samples. This is the Shannon-Nyquist limit.

- Higher frequencies generate aliases
Aliasing

- (image a) Consider a sinusoid such that $u=1$ over a span of $N = 8$ units.
- (image b) Consider a sinusoid such that $u=7$ over a span of $N = 8$ units.
- The resulting samples are identical. The two different signals are indistinguishable after sampling and hence are aliases for each other.
Recall: Sampling Rates

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

Recall: Sampling Rates
Recall: Sampling Rates

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Recall: Sampling Rates

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Recall: Sampling Rates

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?
Sampling Theorem

A signal can be reconstructed from its samples, iff the original signal has no content \( \geq \) 1/2 the sampling frequency - Shannon

**Aliasing** will occur if the signal is under-sampled
Temporal Aliasing: The Wagon Wheel Effect

http://youtu.be/0k2lhYk6Lfs
Frequency Spectra
A Sum of Sines

• Our building block:
  • \( f(x) = A \sin(\omega x + \phi) \)

• Add enough of them to get any signal you want!

• How many degrees of freedom?

• What does each control?

• Which one encodes the coarse vs. fine structure of the signal?

\[
f(\text{target}) = \frac{f_1 + f_2 + f_3 + \ldots + f_n}{f_1 + f_2 + f_3 + \ldots + f_n}
\]
Frequency Spectra

- example: \( g(x) = \sin(2\pi f \cdot x) + \left(\frac{1}{3}\right) \sin(2\pi (3f) \cdot x) \)

We can plot the amplitudes and frequencies to describe \( g(x) \)
Frequency Spectra

= +
Frequency Spectra

\[
\text{Frequency Spectra} = \text{Graph 1} + \text{Graph 2}
\]
Frequency Spectra

\[ \text{[Diagram of frequency spectra]} \]
Frequency Spectra

\[ = \]
Frequency Spectra

\[ \sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kt) \]
Examples of Frequency Spectra

(a) A continuous signal $f(x)$ and its Fourier transform $|F(u)|$.

(b) A discrete signal with a periodic spectrum.

(c) A random signal and its Fourier transform, showing a broad spectrum.
Discrete Cosine Transform (DCT)
How to determine the Amplitudes?

• The DCT transformation is a way of decomposing a spatial image into sinusoidal basis images.

• The forward DCT goes from spatial to frequency. The inverse DCT goes from frequency to spatial.

• The DCT is invertible – no loss of information either way.
DCT (one-dimensional)

- Discrete cosine transform

\[
C(u) = \alpha(u) \sum_{x=0}^{N-1} f(x) \cos \left( \frac{(2x + 1)u\pi}{2N} \right)
\]

\[
\alpha(k) = \begin{cases} 
\frac{1}{N} & \text{if } k = 0 \\
\frac{2}{N} & \text{otherwise}
\end{cases}
\]

- The strength of the ‘u’ sinusoid is given by \( C(u) \)
  - Project \( f \) onto the basis function
  - All samples of \( f \) contribute the coefficient
  - \( C(0) \) is the zero-frequency component – the average value!
Consider a digital image such that one row has the following samples:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>20</td>
<td>12</td>
<td>18</td>
<td>56</td>
<td>83</td>
<td>10</td>
<td>104</td>
<td>114</td>
</tr>
</tbody>
</table>

- There are 8 samples so N=8
- u is in [0, N-1] or [0, 7]
- Must compute 8 DCT coefficients: C(0), C(1), …, C(7)
- Start with C(0)

\[
C(0) = \sqrt{\frac{1}{N}} \sum_{x}^{N-1} f(x)
\]
DCT: Computing C(0)

\[
C(0) = \sqrt{\frac{1}{8}} \sum_{x=0}^{7} f(x) \cos \left( \frac{(2x + 1) \cdot 0\pi}{2 \cdot 8} \right)
\]

\[
= \sqrt{\frac{1}{8}} \sum_{x=0}^{7} f(x) \cos (0)
\]

\[
= \sqrt{\frac{1}{8}} \cdot \{f(0) + f(1) + f(2) + f(3) + f(4) + f(5) + f(6) + f(7)}
\]

\[
= .35 \cdot \{20 + 12 + 18 + 56 + 83 + 110 + 104 + 115\}
\]

\[
= 183.14
\]
DCT: Computing the Remaining Coefficients

Spatial Domain

<table>
<thead>
<tr>
<th>f(0)</th>
<th>f(1)</th>
<th>f(2)</th>
<th>f(3)</th>
<th>f(4)</th>
<th>f(5)</th>
<th>f(6)</th>
<th>f(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12</td>
<td>18</td>
<td>56</td>
<td>83</td>
<td>110</td>
<td>104</td>
<td>114</td>
</tr>
</tbody>
</table>

Frequency Domain

<table>
<thead>
<tr>
<th>C(0)</th>
<th>C(1)</th>
<th>C(2)</th>
<th>C(3)</th>
<th>C(4)</th>
<th>C(5)</th>
<th>C(6)</th>
<th>C(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>183.1</td>
<td>-113.0</td>
<td>-4.2</td>
<td>22.1</td>
<td>10.6</td>
<td>-1.5</td>
<td>4.8</td>
<td>-8.7</td>
</tr>
</tbody>
</table>
DCT Implementation (Brute Force)

- Since the DCT coefficients are reals, stored with an array of floats

- This approach is $O(\cdot)$

```java
public static float[] forwardDCT(float[] data) {
    final float alpha0 = (float) Math.sqrt(1.0 / data.length);
    final float alphaN = (float) Math.sqrt(2.0 / data.length);
    float[] result = new float[data.length];

    for (int u = 0; u < result.length; u++) {
        for (int x = 0; x < data.length; x++) {
        }
        result[u] *= (u == 0 ? alpha0 : alphaN);
    }

    return result;
}
```
DCT (two-dimensional)

- The 2D DCT is given below where the definition for alpha is the same as before

\[ C(u, v) = \alpha(u)\alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) \cos\left(\frac{(2x + 1)u\pi}{2N}\right) \cos\left(\frac{(2y + 1)v\pi}{2N}\right) \]

- For an MxN image there are MxN coefficients

- Each image sample contributes to each coefficient

- Each (u,v) pair corresponds to a ‘pattern’ or ‘basis function’
DCT Basis Functions

Basis Functions

Imaged
The DCT is Invertible

• Spatial samples can be recovered from the DCT coefficients

\[
 f(x) = \sum_{u=0}^{N-1} \alpha(u) C(u) \cos \left( \frac{(2x + 1)u\pi}{2N} \right) 
\]

\[
 f(x, y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \alpha(u)\alpha(v) C(u, v) \cos \left( \frac{(2x + 1)u\pi}{2N} \right) \cos \left( \frac{(2y + 1)v\pi}{2N} \right) 
\]
Frequency Domain

• The central idea in frequency domain representation is to

  • Find a set of orthogonal sinusoidal patterns that can be combined to form any image

  • Any image can be expressed as the weighted sum of these basis images.

• The DCT, as well as the discrete Fourier transform, are ways of decomposing an image into the sum of sinusoidal basis images
Lec23 Required Reading
• Hunt, Ch. 9.4
• House, Ch. 14