CPSC 4040/6040
Computer Graphics
Images

Joshua Levine
levinej@clemson.edu
Agenda

- PA02 Results
- Q02 Due on Thurs.
- PA03 Questions?
Last Time
Figure 5.10. Histogram equalization of an underexposed image.

Figure 5.11. Histogram equalization of a low-contrast image.
The Black Line is the CDF
Median vs. Mean Filtering

Output = \text{mean}(N_i)

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)
(a) Most common sample.

(b) Range filtering.

Figure 6.26. Other statistically-based filters.
Convolution
Overview of Region Processing

- Under point processing a single input sample is processed to produce a single output sample.

- In regional processing the value of the output sample is dependent on the values of samples within close proximity to the input sample.

- Exactly how the region is selected and how samples within the region affect the output depends upon the desired effect.

- **Convolution** and **Correlation** are two important regional operations.
An Example: Mean Filtering

- Mean filters sum all of the pixels in a local neighborhood N_i and divide by the total number, computing the average pixel.

- Said another way, we replace each pixel as a linear combination of its neighbors (with equal weights!)

 $$f(N_i) = 1 / |N_i| \sum C_j,$$

 for pixel j in N_i

- Where the N_i is a square, we call these **box** filters
Box Filtering

0 0 0 0
0 1 0 0
0 0 0 0

1 1 1 1
1/9 * 1 1 1 1
1 1 1 1
Box Filtering

1/9 *

1 1 1
1 1 1
1 1 1

1/25 *

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
Recall: Filtering (Schematic)

\[C_{out} = f(N_{in}) \]

neighborhood \(N_i \) of \(i \)

pixel \(i \)

original image

filtered image
Convolution

- This process of adding up pixels multiplied by various weights is called \textit{convolution}.

\[
\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{array}
\]

neighborhood N_i of i

new pixel color = $30/16$

\[
\begin{array}{ccc}
1 & 3 & 2 \\
1 & 2 & 2 \\
3 & 1 & 2 \\
\end{array}
\]

kernel H

original image G

filtered image $G*H$
Kernels

• Convolution employs a rectangular grid of coefficients, known as a **kernel**

• Kernels are like a neighborhood mask, they specify which elements of the image are in the neighborhood and their relative weights.

• A kernel is a set of weights that is applied to corresponding input samples that are summed to produce the output sample.
Recall: Rank Filtering w/ Masks

- Rank filtering can also use non-rectangular regions:
 - The most common of such regions are in the shape of either a plus (+) or a cross (x).
 - A **mask** is used to specify non-rectangular regions where certain elements in the region are marked as either included (white) or excluded (black) from the region.

![Figure 6.23. Rank filtering masks for a 3 × 3 square, 3 × 3 x, and 3 × 3 +.](image)
One-dimensional Convolution

• Can be expressed by the following equation, which takes a filter H and convolves it with G:

$$\hat{G}[i] = (G * H)[i] = \sum_{j=i-n}^{i+n} G[j]H[i-j], \ i \in [0, N-1]$$

• Equivalent to sliding a window
• The above is continuous, but a discrete version could be imagined as:

\[H = 111 \]

\[G = \ldots0000011100000\ldots \]

\[G*H = \ldots0000012100000\ldots \]

http://en.wikipedia.org/wiki/Convolution

More examples: http://math.mit.edu/daimp/ConvFlipDrag.html
Box Filters (Animated)

- The above is continuous, but a discrete version could be imagined as:

\[H = 111 \]

\[G = \ldots0000011100000\ldots \]

\[G \ast H = \ldots0000012100000\ldots \]

http://en.wikipedia.org/wiki/Convolution

More examples: http://math.mit.edu/daimp/ConvFlipDrag.html
2-Dimensional Version

- Given a WxH grayscale image I and an MxN kernel K such that M and N are odd the convolution of I with K is given below where x is in [0,W-1] and y is in [0, H-1].

\[(I \otimes K)(x, y) = I'(x, y) = \sum_{j=-[M/2]}^{[M/2]} \sum_{k=-[N/2]}^{[N/2]} K(j, k) \cdot I(x - j, y - k). \quad (6.1)\]

- The (x-j) and (y-k) terms can be understood as reflections of the kernel about the central vertical and horizontal axes.

- The kernel weights are multiplied by the corresponding image samples and then summed together.
A note on indexing

- Convolution **reflects** the filter to preserve orientation.
- Correlation does **not** have this reflection.
 - But we often use them interchangeably since most kernels are symmetric.

Convolution **reflects** and **shifts** the kernel.

Given kernel $H = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$

$G \otimes H$
Figure 6.2. A 3×3 kernel is centered over sample $I(x, y)$.
Figure 6.2. A 3×3 kernel is centered over sample $I(x, y)$.

Figure 6.3. Convolution steps.
More Formally

\[I \otimes g(x) = \int_{x'} I(x')g(x - x') \]
Reminder: Boundaries

• Consider how to handle boundaries. What should be done if the kernel falls off of the boundary of the source image as shown in the illustrations below?

(a) Kernel at $I(0, 0)$.
(b) Kernel larger than the source.

Figure 6.4. Illustration of the edge handling problem.
Boundary Padding

• Either we redefine convolution to:
 • Produce zero when the kernel falls off of the boundary. If the kernel extends beyond the source image when centered on a sample $I(x, y)$ then the output sample is set to zero.
 • Produce $I(x, y)$ when the kernel falls off the boundary. If the kernel extends beyond the source image when centered on a sample $I(x, y)$ then the output sample is defined as $I(x, y)$.

• Or else we use boundary padding:

![Figure 6.5](image)

Figure 6.5. (a) Zero padding, (b) circular indexing, and (c) reflected indexing.
Kernel Rescaling

• Important: rescale the kernel by making the coefficients sum to 1.

• The effect of the kernel is unchanged

• Rescaling the kernel is equivalent to rescaling the convolved image.

(a) Non-normalized.

(b) Normalization.

\[\frac{1}{9} \]

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
.111 & .111 & .111 \\
.111 & .111 & .111 \\
.111 & .111 & .111 \\
\end{array}
\]

(c) Normalized.

Figure 6.6. Normalizing a kernel.
Smoothing Filters
Smoothing Spatial Filters

• Any weighted filter with positive values will smooth in some way, examples:

 \[
 \frac{1}{9} \times \begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 \end{bmatrix}
 \]

 \[
 \frac{1}{16} \times \begin{bmatrix}
 1 & 2 & 1 \\
 2 & 4 & 2 \\
 1 & 2 & 1 \\
 \end{bmatrix}
 \]

• Normally, we use integers in the filter, and then divide by the sum (computationally more efficient)

• These are also called **blurring** or **low-pass** filters
Smoothing Kernels

\[f(x, y) = -\alpha \cdot \max(|x|, |y|) \]

\[G(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

\[f(x, y) = -\alpha \cdot \sqrt{x^2 + y^2} \]

(a) Pyramid.
(b) Cone.
(c) Gaussian.

Table 6.1. Discretized kernels.
Box Filter
Gaussians

\[G(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

- Gaussian kernel is parameterized on the standard deviation \(\sigma \)
- Large \(\sigma \)'s reduce the center peak and spread the information across a larger area
- Smaller \(\sigma \)'s create a thinner and taller peak
- Gaussians are smooth everywhere.
- Gaussians have infinite support
 - >0 everywhere
- But often truncate to 2\(\sigma \) or 3\(\sigma \)

http://en.wikipedia.org/wiki/Gaussian_function
Smoothing Example

(a) Source image.
(b) 17 × 17 Box.
(c) 17 × 17 Gaussian.

Figure 6.10. Smoothing examples.
Smoothing Smoothing Filters

- Box \otimes Box = Tent (Pyramid)
- Tent \otimes Tent = Bell (Gaussian)
Sharpening Filters
Sharpening (Idea)

Input

-

=

blurred

High pass

Input

High pass

+ k*

=

Sharpened image
Sharpening is a Convolution

• This equation can then be used to generate appropriate sharpening kernels

• Assume that $I = I \otimes K_{\text{identity}}$ and $I_{\text{low}} = I \otimes K_{\text{low}}$

\[
I_{\text{sharp}} = (1 + \alpha)I - \alpha I_{\text{low}},
\]
\[
= (1 + \alpha)(I \otimes K_{\text{identity}}) - \alpha(I \otimes K_{\text{low}}),
\]
\[
= I \otimes (1 + \alpha)K_{\text{identity}} - I \otimes (\alpha K_{\text{low}}),
\]
\[
= I \otimes ((1 + \alpha)K_{\text{identity}} - \alpha K_{\text{low}}).
\]
Sharpening is a Convolution

\[I_{\text{sharp}} = (1 + \alpha)I - \alpha I_{\text{low}}, \]
\[= (1 + \alpha)(I \otimes K_{\text{identity}}) - \alpha(I \otimes K_{\text{low}}), \]
\[= I \otimes (1 + \alpha)K_{\text{identity}} - I \otimes (\alpha K_{\text{low}}), \]
\[= I \otimes ((1 + \alpha)K_{\text{identity}} - \alpha K_{\text{low}}). \]

\[K_{\text{identity}} = \frac{1}{9} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \]
\[K_{\text{low}} = \frac{1}{9} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \]
\[(1 + \alpha)K_{\text{identity}} - \alpha K_{\text{low}} = \frac{1}{9} \times \begin{bmatrix} -\alpha & -\alpha & -\alpha \\ -\alpha & (9 + 8\alpha) & -\alpha \\ -\alpha & -\alpha & -\alpha \end{bmatrix}. \]
Lec13 Required Reading
- Hunt — 3.4, 7.1.3, 7.1.4
- Szeliski — 2.3, 3.5:

http://link.springer.com/book/10.1007/978-1-84882-935-0/page/1