iLike: Integrating Visual and Textual Features for Vertical Search

Yuxin Chen\(^1\), Nenghai Yu\(^2\), Bo Luo\(^1\), Xue-wen Chen\(^1\)

\(^1\) Department of Electrical Engineering and Computer Science
The University of Kansas, Lawrence, KS, USA

\(^2\) Department of Electrical Engineering and Information Sciences
University of Science and Technology of China, Hefei, China

Motivation

- The problem
 - Huge amount of multimedia information available
 - Browsing and searching is even harder than text

- Text-based image search
 - Adopted by most image search engines
 - Efficient – text-based index
 - Text similarity, PageRank
 - Some queries work very well
 - Clearly labeled images
 - Distinct keywords
 - Some queries don’t
 - Insufficient tags
 - Gap between tag terms and query terms

- Content-based Image Retrieval (CBIR)
 - Visual features: color, texture, shape...
 - Semantic gap
 - Low level visual features vs. image content
 - sun -> nice sunshine -> a beautiful day
 - Excessive computation: high dimensional indexing?

Preliminaries

- Data set
 - Vertical search: online shopping for apparels and accessories
 - Text contents are better organized
 - We can associate keywords and images with higher confidence
 - In this domain, text description and images are both important

- Data collection
 - Focused crawling: 20K items from six online retailers
 - Mid-sized hi-quality image with text description
 - Feature extraction
 - 263 low-level visual features: color, texture and shape
 - Normalization

Motivation

- Content-based Image Retrieval (CBIR)
 - Visual features: color, texture, shape...
 - Semantic gap
 - Low level visual features vs. image content
 - sun -> nice sunshine -> a beautiful day
 - Excessive computation: high dimensional indexing?

Motivation

- Text-based image search
 - Adopted by most image search engines
 - Efficient – text-based index
 - Text similarity, PageRank
 - Some queries work very well
 - Clearly labeled images
 - Distinct keywords
 - Some queries don’t
 - Insufficient tags
 - Gap between tag terms and query terms
 - Descriptive queries: “paintings of people wearing capes”

Motivation

- Put textual and visual features together?
- In the literature: hybrid approaches
 - Text-based search: candidates
 - CBIR-based re-ranking or clustering
- Our idea
 - Connect textual features (keywords) with visual features
 - Represent keywords in the visual feature space
 - Learn users’ visual perception for keywords

Motivation

- The problem
 - Huge amount of multimedia information available
 - Browsing and searching is even harder than text

- Text-based image search
 - Adopted by most image search engines
 - Efficient – text-based index
 - Text similarity, PageRank
 - Some queries work very well
 - Clearly labeled images
 - Distinct keywords
 - Some queries don’t
 - Insufficient tags
 - Gap between tag terms and query terms

- Content-based Image Retrieval (CBIR)
 - Visual features: color, texture, shape...
 - Semantic gap
 - Low level visual features vs. image content
 - sun -> nice sunshine -> a beautiful day
 - Excessive computation: high dimensional indexing?
Representing keywords

- **Keywords**
 - Image -> Human perception -> text description
 - Perception is subjective, the same impression could be described through different words
 - Calculating text similarity (or distance) is difficult - distance measurements (such as cosine distance in TF/IDF space) do NOT perfectly represent the distances in human perception.

- Items share the same keyword(s) may also share some consistency in **selected** visual features.
- If the consistency is observed over a significant number of items described by the same keyword, such a set of features and their values may represent the human “visual” perception of the keyword.

Example: *checked*

- **Example:** floral

For each term, we have
- Positive set: items described by the term
- Negative set: items not described by the term

“Good” features
- are coherent with the human perception of the keyword
- have consistent values in the positive set
- show different distributions in the positive and negative sets

How do we identify “good” features for each keyword?
- Compare the distributions in the positive and negative sets...

Distribution of visual features (term="floral")
Kolmogorov-Smirnov test

- Two sample K-S test
 - Identify if two data sets are from same distribution
 - Makes no assumptions on the distribution
 - Null hypothesis: two samples are drawn from same distribution
 - P-value: measure the confidence of the comparison results on the null hypothesis.
 - Higher p-value -> accept the null hypothesis -> insignificant difference in the positive and negative sets -> "bad" feature
 - Lower p-value -> reject the null hypothesis -> statistically significant difference in the positive and negative sets -> "good" feature

Weighting visual features

- More examples: "shades"

Query expansion and search

- User employs text-based search to obtain an initial set
- For each item in the initial set:
 - Load the corresponding weight vector for each keyword
 - Obtain an expanded weigh vector from the textual description.

\[q'(Item_i, Query) = q_i \times (\alpha \cdot w_1 + \beta \cdot w_2) \]
Query expansion and search
• CBIR-query vectors

Results
• iLike: our approach
• Baseline: Pure CBIR
• Query: “floral”

We are able to infer the implicit user intension behind the query term, identify a subset of visual features that are significant to such intension, and yield better results.

Visual thesaurus
• Statistical similarities of the visual representations of the text terms

Table 1: visual thesaurus

<table>
<thead>
<tr>
<th>Words</th>
<th>First Few Words in Visual Thesaurus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feminine:</td>
<td>barefoot, hipster,acey, pregnancy, love, lifestyle, broad, curvy, femininity.</td>
</tr>
<tr>
<td>Ugly:</td>
<td>shirt, tshirt, urban, effortless, prance, dress, edge, runway, minimal</td>
</tr>
<tr>
<td>Spring:</td>
<td>soft, spring, floral, guaze, glamour, saucy, surprise, beautifully, pajamas.</td>
</tr>
<tr>
<td>Trendy:</td>
<td>adorn, striking, playful, supereil, sling, sucy, luscious, cuddly, choose.</td>
</tr>
<tr>
<td>Sunstripes</td>
<td>mood, sporty, klash, plant, cedar, geometric, guay, rella, chiv, thong</td>
</tr>
<tr>
<td>Needlework:</td>
<td>socks, crochet, wreatlthy, silica, currency, spectrum, sweetness, fun, crease</td>
</tr>
<tr>
<td>Villi:</td>
<td>comfortable, plush, couture, logo, decorative, bowtie, classically, rigors.</td>
</tr>
</tbody>
</table>

Conclusion and future work
• iLike: find the “visual perception” of keywords
• Better recall compared with text-based search
• Better precision: understand the needs of the users

• Better “understanding” of keywords: NLP?
• More features?
• Segmentation: feature+region?
Thank you!

Questions?