Algorithm for Generating Wisps

Pseudo code for the entire algorithm

This algorithm uses a uniform random number generator and two separate copies of fractal summed Perlin noise (FSPN). The random number generator has an input parameter - the seed. Each of the FSPN has a collection of parameters that you need to set independently in order to get the full range of visual options from the wisps.

```plaintext
for( loop over particles )
{
    // Initialize position of first dot
    x = 2.0*prn1.eval() - 1;
y = 2.0*prn1.eval() - 1;
z = 2.0*prn1.eval() - 1;
for( loop over dots for this particle )
{
    // correlated walk for the random position
    // First: random displacement step
    vx = 2.0*prn1.eval() - 1;
yv = 2.0*prn1.eval() - 1;
    vz = 2.0*prn1.eval() - 1;
    // Second: update position with a correlation function
    x = corr * x + (1-corr) * vx
    y = corr * y + (1-corr) * vy
    z = corr * z + (1-corr) * vz

    // move position to unit sphere
    radius = sqrt( x*x + y*y + z*z );
xsphere = x/radius;
ysphere = y/radius;
    zsphere = z/radius;

    // displace radially from sphere using fractal sum
    radial_disp = pow(fabs(PerlinNoise1.eval( Vector(x, y, z ) )), clump ); // Perlin noise using wisp-named parameters
    xsphere *= radial_disp;
ysphere *= radial_disp;
    zsphere *= radial_disp;

    // map to guide particle coordinate
    xdot = xparticle + xsphere * pscale;
ydot = yparticle + ysphere * pscale;
    zdot = zparticle + zsphere * pscale;

    // displace again with 3D fractal sum noise
    // generates three noise values by displacing position of evaluation
    dx = 0.1;
xfsn = PerlinNoise2.eval( Vector(xsphere, ysphere, zsphere ) ) * wisp_displacement;
yfsn = PerlinNoise2.eval( Vector(xsphere + dx, ysphere + dx, zsphere + dx) ) * wisp_displacement;
zfsn = PerlinNoise2.eval( Vector(xsphere - dx, ysphere - dx, zsphere - dx) ) * wisp_displacement;
    xdot += xfsn;
ydot += yfsn;
...}
```

zdot += zfsn;

// Now ready to bake a dot into the volume at (x, y, z)
BakeDot(x, y, z, particle_density, particle_color);
}

This page was last modified on 8 March 2017, at 12:36.