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Abstract— BitTorrent is a widely deployed peer-to-peer pro-
tocol that provides scalable file sharing capabilities. While Bit-
Torrent applications contribute to the demand for high speed
broadband access, they also contribute to the undesirable 80/20
effect wherein 80% of the bandwidth is consumed by 20% of the
users. In this study we explore the impact that BitTorrent users
can have on a DOCSIS cable network. We began the study by
capturing packet traces of BitTorrent applications operating on
two commercial DOCSIS cable networks. Next we developed for
the ns-2 simulation tool a configurable mix of BitTorrent, Web
browsing, and VoIP workloads and verified that the behavior
of the simulated BitTorrent workloads to be consistent with the
behavior observed on the commercial network. In this simulated
environment, we show that as few as 15 BitTorrent users can
significantly reduce the service quality experienced by other
subscribers.

I. INTRODUCTION

The use of peer-to-peer (P2P) applications has grown to
such an extent that P2P traffic often greatly exceeds HTTP
traffic on Internet links. Although P2P networks are well
known for the ethical and legal issues raised by their wide-
spread use, they also pose interesting technical challenges
in the area of bandwidth management, especially on shared
medium access networks. In xDSL access networks, intelligent
queuing algorithms in gateway routers can reduce the impact
of P2P users, but in shared medium access networks such
as DOCSIS we show that this impact can be a significant
problem.

A. DOCSIS

The Data Over Cable Service Interface Specification (DOC-
SIS) defines a set of standards that support the transport of data
over a cable network [1], [2]. The physical layer of a DOCSIS
system is a shared access cable. Medium access is controlled
by a head-end device called the Cable Modem Terminating
System (CMTS). All packet flow is between the CMTS and
the Cable Modems (CMs). Downstream bandwidth is shared in
an asynchronous TDM fashion under the control of the CMTS
via a possibly prioritized form of round robin scheduling.

Multiple CMs must contend for access to the upstream chan-
nel, and the channel allocation procedure is quite complex. The
upstream channel is subdivided into transmission slots referred
to as mini-slots. The capacity in bytes of a mini-slot on a
given DOCSIS network is fixed and is in the range of 8 to 16
octets. Permission to transmit data in a block of one or more

mini-slots must be granted to a CM by the CMTS. The CMTS
grants mini-slot ownership by periodically transmitting a frame
called the MAP on the downstream channel. In addition to
ownership grants, the MAP also typically identifies some
mini-slots as contention slots in which CMs may bid for for
quantities of future mini-slots. To minimize collisions in the
contention slots, a non-greedy backoff procedure is employed.
Each CM is required to randomly select the contention slot in
which it transmits a bid for mini-slots. When collisions do
occur in contention slots, all parties that collide are required
to employ an exponential backoff, doubling the size of the
window of slots in which the next bid is randomly placed.
Two additional facilities reduce contention. When a CM has
a backlog of upstream traffic it may piggyback a request for
additional mini-slots in a request field of the current frame
header. The concatenation facility allows multiple (typically
small) IP packets to be transmitted as a single logical upstream
MAC layer protocol data unit.

B. BitTorrent

BitTorrent is a peer-to-peer (P2P) system that can consume
tremendous amounts of bandwidth. For example, at Clem-
son University BitTorrent is the single largest consumer of
outbound Internet bandwidth. This fact led us to conjecture
that BitTorrent traffic would comprise a significant portion
of the load on any network serving a significant population
of teenage and young adult users, and subsequent analysis
of network trace data provided by a large commercial cable
operator has confirmed this.

The BitTorrent protocol has a particular characteristic that
makes its use problematic in shared medium access networks
with asymmetric provisioning such as DOCSIS. A user whose
sole intent is to download a large file often consumes more
upstream bandwidth than downstream in the process!

In this paper we characterize the impact that the upstream
traffic generated as a side-effect of BitTorrent downloads can
have on a DOCSIS network. Our traffic model is derived from
traces of actual BitTorrent traffic captured on the Internet. The
traffic model is then used to drive an ns-2 simulation of a
DOCSIS network from which the results are obtained.

The remainder of the paper is organized as follows. In
section II we review the architecture and related performance
studies of peer-to-peer systems. In section III we describe



measurement studies designed to characterize bandwidth con-
sumption of BitTorrent clients. The results of simulation
analysis designed to assess the impact of BitTorrent on an
HFC cable network are described in section IV. We end the
paper with conclusions and our future directions.

II. BACKGROUND AND RELATED WORK

In addition to file sharing, P2P has been used for grid
computation [3], storage [4], web caching [5] and directory
services [6], [7]. BitTorrent, however, is designed specifically
for file distribution. The algorithms contained in BitTorrent
were heavily influenced by the earlier P2P protocols and
applications such as Gnutella [8] and Kazaa [9], [10].

A. BitTorrent

The BitTorrent protocol itself is described in [11], [12]. A
downloadable file (or collection of related files) is commonly
referred to as a forrent. Each torrent is partitioned into pieces,
commonly 256 Kbytes in size. Different pieces of a torrent
may be simultaneously downloaded from different peers. The
efficacy of this approach was validated in [13] whose authors
experimented with several parallel access schemes to down-
load a file from multiple servers concurrently.

To initiate a BitTorrent download, a BitTorrent client must
contact the tracker system for the torrent to be downloaded.
Tracker system addresses may be retrieved from a collection
of well-known web sites that provide indexing services and
distribute small .forrent metadata files that identify both the
tracker system for the torrent and the pieces that comprise
it. The tracker system is responsible for disseminating the
dynamically changing set of IP addresses of active BitTorrent
client (peer) nodes that presently hold pieces of a torrent.
However, the tracker system does not normally serve the data
pieces of a torrent.

When a BitTorrent client contacts a tracker to initiate a
download, the tracker system provides a list of IP address/port
pairs identifying peers that have one or more pieces of the file.
The client attempts to maintain connections with at least 20
peers (referred to as the peer set). If it can not, it asks the
tracker for additional peers. The client exchanges pieces of
the forrent that it has downloaded for pieces that it needs.

An objective of the BitTorrent protocol is to reward peers
that are presently providing the highest download rates. When
performing a download, a BitTorrent client will also upload
requested pieces that it holds to at most five peers at a time.
The first four of these are the peers presently providing the
highest download rates, and the fifth is randomly selected.
Therefore, after a BitTorrent client has successfully down-
loaded a piece of the torrent it may subsequently forward the
piece to multiple peers. It is this effect that can cause the
total amount of upstream traffic produced during a download
to exceed the total amount of downstream traffic.

After a peer has downloaded the entire file, it becomes a
seed and provides pieces of the file to any peer. The system
is self-scalable in that as the number of downloaders increase,

so does the number of nodes that can provide pieces of the
torrent.

To enhance performance, BitTorrent further breaks pieces
into smaller (typically 16 Kbytes) sub-pieces (sometimes
called blocks) and maintains a strategy of having at least
5 concurrent block requests pipelined to a given peer. A
piece selection algorithm in the client determines the order in
which pieces are requested. This algorithm randomly selects
the initial pieces. After one or more pieces are received, the
algorithm switches to a rarest first algorithm which, based
on information learned from its peers, attempts to the least
available pieces first. When the peer has downloaded all but
the last few pieces, it sends requests for these sub-pieces to
all peers.

B. Related work

There has been a great deal of prior research on P2P
protocols and systems. The majority of the studies have
focused either on P2P deployments in the Internet [14]-[16] or
on evaluating protocol issues [7], [17], [18]. There have been
several analytic models proposed. Several notable efforts have
been based on queuing theory [19] and on fluid flow models
[20], [21].

The existing studies of BitTorrent indicate that the protocol
is indeed scalable and robust [22]-[26]. In [24] the authors
examined the log file from the tracker associated with the
popular Redhat Linux 9 distribution torrent. They observed
that peers continue to participate in the BitTorrent network as
a seed for an average of 6.5 hours after the entire file has
been downloaded. The authors also showed that the average
download rate is over 500 Kbps and that nodes do consume
symmetric amounts of bandwidth. The authors observed that
81% of all file downloads were incomplete. Of these aborted
downloads, 90% had retrieved less than 10% of the file.
The average download rate of the 19% of the sessions that
completed was 1.3 Mbps which is larger than the average
download rate of all sessions at 500 Kbps. The authors studied
an individual peer by running an instrumented client. The
client downloads a 1.7 Gbyte file in 4500 seconds. During
the download period, the client interacted with roughly 40
peers. They found that the volume of traffic in the upstream
and downstream directions at the client was correlated but
throughputs were not correlated. 85% of the file was sent by
only 20 peers including 8 seeds that provided 40% of the
file. This set of 20 peers were not a part of the initial peer
list provided by the tracker which suggests that to enhance
performance NAT must not prevent nodes from connecting
with a downloader.

The work that is most similar to ours performed an analysis
of client-side BitTorrent nodes participating in a number of
long download sessions (2 to 12 days in length) [27], [28]. The
authors found that the average session transferred roughly 40
Mbytes and lasted for roughly 400 seconds. Session interar-
rivals can be modeled using the hyper-exponential distribution
and session durations can be modeled by the lognormal distri-
bution. Our modeling work differs in that we are interested in



characterizing the bandwidth consumption of individual TCP
connections.

III. MODELING BITTORRENT TRAFFIC

BitTorrent traffic consists of two components: signaling and
data. Signaling traffic is described in [27]. It is carried in low-
rate TCP flows in which application payloads are smaller than
the TCP header. It typically comprises a very small percentage
of overall traffic, and we do not consider it in this study.

Although the measurement results presented in this paper
are limited to downloads of a single torrent, we have analyzed
traces associated with many torrents. These studies clearly
demonstrate that no single model can reasonably reflect all
of the operational modes that can be readily observed. Fur-
thermore, it is the case that not all torrent downloads have
adverse impact upon competing traffic. Of the three different
modes of operation identified below, only one has particularly
adverse impact upon a DOCIS network.

The highest performance torrents have many seeds that are
hosted by high speed access networks such as Internet-2. An
example of such a torrent is the Fedora-Core 4 distribution
of Linux. In one experiment, a torrent of size 2.6 Gbyte
was downloaded by a DOCSIS client having a nominal 3
Mbps downstream limit at a sustained throughput of over 800
Kbps. Because Fedora-Core 4 had already been superceded by
Fedora-Core 5, there was little demand for this torrent, and
consequently the download produced virtually no upstream
data traffic at all. The download of a torrent of this type, like
the download of a UTube movie from a high speed server,
generates only ACK flow in the upstream direction and thus
has little impact on other users of a DOCSIS network.

At the other performance extreme we have encountered
collections of music with few seeds and/or few peers in which
the sustained download rate is less than 10 Kbps. Torrents
having few downloaders or low bit rates also have little
negative impact on competing traffic in a DOCSIS network
because they do not produce high volume upstream traffic.

In contrast, shortly after a new torrent such as a new
distribution of Linux (or a pirated popular movie) is first
posted, there are many peers actively exchanging pieces of the
torrent. When this occurs, it will be shown that more upstream
traffic than downstream can be associated with a download. In
this situation, competing traffic on a DOCSIS network can be
significantly affected. Thus, it is this type of BitTorrent traffic
that we seek to model.

A. BitTorrent traces

Because our objective was to demonstrate the potential
adverse affects of BitTorrent traffic on a DOCSIS network,
we obtained sets of traces of the download of a 4.3 Gbyte
torrent that was being actively traded on the public Internet.
According to statistics obtained from the tracker, this torrent
consistently had hundreds of downloaders. We also observed
that tens of peers entered and left our peer set over the course
of a download.

The BitTorrent client was located on a home network
connected to the Internet through Charter’s high speed cable
service. The service provides 3 Mbps downstream and 512
Kbps upstream. The BitTorrent client was version 4.04 from
the original (and still popular) client developed by Cohen [2].
The client PC was a 2.8 MHz Intel machine with 1 Gbyte
of RAM running WindowsXP Professional. We captured the
traces on the client PC using Ethereal [29]. The home network
connected to the cable modem through a broadband router that
provided NAT and port filtering capabilities.

Trace File Pkts / 105 | TCP Cxs | Hours | Incoming Cx
Grp I, DS 1 6.84 1552 15.3 | blocked
Grp 1, DS 2 8.75 1997 16.4 | blocked
Grp 2, DS 1 6.84 4596 8.3 | open
Grp 2, DS 2 5.70 3267 6.2 | open
TABLE I
SUMMARY OF BITTORRENT TRACE FILES
Trace | Group | Dataset | Section
1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 2 1 1
6 2 1 2
7 2 2 1
8 2 2 2
TABLE II
TRACE ID MAPPING TABLE
Upstream Downstream
Trace Secs | Bytes/10° Cxs Secs | Bytes/10° Cxs
1 14941 572.0 658 | 18993 475.6 388
2 12563 581.1 245 | 15854 551.5 121
3 14447 594.1 685 | 17853 421.6 374
4 10806 533.4 341 | 12648 536.8 225
5 8605 4949 | 1396 9534 517.1 | 1494
6 8297 4879 | 1122 9401 542.0 | 1221
7 8307 463.7 | 1050 8160 569.4 976
8 7779 457.8 | 1177 8267 563.1 | 1223
TABLE III

SUMMARY OF BITTORRENT TRACE FILES

B. Measurement data

Two groups of traces were captured. For Group 1, the
broadband router was configured to block incoming TCP con-
nections. For Group 2, unsolicited inbound TCP connections
were permitted. All traces were terminated when the torrent
download was complete and thus do not show the client op-
erating as a seed. Each group contains traces of two complete
downloads of the target 4.3 Gbyte torrent. The four downloads
were performed serially. The two individual download traces
belonging to Group 1 and Group 2 are referred to as Dataset
1 (DS1) and Dataset 2 (DS2) respectively. The characteristics
of the four complete traces are summarized in Table I. This



UsS DS Ratio Us DS
Trace | Kbps | Kbps | US:DS Flows Flows
1 306 200 1.53 33,19,09 3.7,13,04
2 370 278 1.33 54,209, 1.0 5.3, 18,08
3 329 189 1.74 5.5,32,0.6 56,1.1,0
4 395 339 1.16 6.8,3.8,0.5 7.6, 1.65, 0.7
5 460 434 1.06 | 7.8, 5.7, 0.07 10.3, 4.0, 0.1
6 470 461 1.02 | 8.1,5.6,036 | 108, 3.8, 0.13
7 446 558 0.80 | 7.9,5.2,0.11 10.2, 4.7, 1.0
8 471 545 0.86 | 8.7,5.5,0.11 | 11.9, 4.5, 0.45

TABLE IV

AGGREGATE MEASUREMENT RESULTS

Upstream
Trace | Thpt(bps) stdev | Loss % | Traffic %
1 41619 | 49410 0.99 85.8
2 70004 | 55384 1.20 87.3
3 54465 | 26184 0.56 81.0
4 37728 | 18670 0.99 70.3
5 49267 | 15533 0.50 78.5
6 50773 | 24045 3.00 79.2
7 43648 | 25754 1.06 84.6
8 44686 | 11489 0.27 78.0
Reverse direction
Trace | Thpt(bps) | Loss % | Traffic % | US:DS
1 13133 1.02 37.7 3.17
2 23992 0.23 43.6 2.92
3 24814 1.19 69.9 2.19
4 19954 2.13 39.2 1.89
5 36367 0.85 61.2 1.35
6 33082 1.36 50.9 1.53
7 46471 0.40 71.0 0.94
8 34996 0.44 53.7 1.28
TABLE V

Top 10 UPSTREAM TCP CONNECTIONS IN EACH TRACE

table illustrates that the BitTorrent protocol works much more
effectively when incoming TCP connections are permitted.
The Group 2 downloads, using a much larger number of
TCP connections, complete in approximately half the real time
required by those in Group 1.

To observe changes in dynamics over the lifetime of the
download and to characterize the difference in downstream
and upstream behavior, we divide each of the four datasets into
two sections. Each section consists of an upstream component
and a downstream component. Each component consists of
one million packet trace records. Section one commences at
the start of the dataset, and section two starts at (aggregate)
trace record 2,500,001. Thus section one data characterizes the
initial phase of the download, and section two characterizes
the steady state behavior. In the following discussion we refer
to a section as trace n for n = 1..8. The mapping is shown in
in Table II.

Characteristics of the upstream and downstream components
of the eight trace sections are shown in table III. The Secs
column is the elapsed time in seconds covered by the one
million trace records of the component. Upstream and down-
stream times differ because the packet arrival rates differ. The
columns labeled Bytes / 108 contain the number of bytes in
millions that were carried by the one million packets belonging

Downstream
Trace | Thpt(bps) stdev | Loss % | Traffic %
1 30297 | 30404 1.12 83.2
2 34338 | 36373 0.58 89.5
3 24718 | 17648 1.27 70.9
4 54253 | 68813 2.15 71.0
5 32984 | 13204 1.12 61.9
6 36905 | 16152 1.25 52.6
7 48707 | 24425 0.40 72.8
8 37954 | 13808 0.43 59.7
Reverse direction
Trace | Thpt(bps) | Loss % | Traffic % | US:DS
1 39366 2.16 713 1.30
2 51485 1.18 84.0 1.49
3 50976 0.58 71.3 2.08
4 28827 0.88 60.9 0.53
5 44325 0.52 78.3 1.35
6 47762 2.93 74.2 1.30
7 42315 1.03 82.8 0.87
8 38186 0.26 68.6 1.01
TABLE VI

Topr 10 DOWNSTREAM TCP CONNECTIONS IN EACH TRACE

a component. The byte counts include application data, TCP
and IP header data, and standalone ACKs. The Cxs columns
show the number of unique destination IP address/port pairs
that were observed in the upstream and downstream directions.
The upstream and downstream counts differ because a single
packet (e.g., a TCP reset or a SYN sent to a host that does not
respond) in the upstream or downstream direction will cause
the connection count to increase.

The first three columns of table IV provide the aggregate
upstream and downstream bit rates in Kbps and the ratio of
the amount of data transferred in the upstream direction to the
downstream. In a traditional Web download of a large object
one would expect to see a single upstream ACK for every
two downstream segments yielding a downstream to upstream
ratio of about 72:1. In contrast, the ratios observed here are
close to 1:1. This overall ratio could be produced by similar
numbers of upstream only or downstream only connections or
by a set of connections that carry significant application data in
both directions. The fact that the downstream bit rate appears
constrained by the nominal bit rate (512 Kbps) of the upstream
link is an indicator of significant bi-directional data flow, and
additional evidence of this behavior will be provided subse-
quently. A particularly non-intuitive result is that blocking
incoming TCP connections raises the upstream:downstream
ratio.

To obtain the flow data shown in the last two columns of
table IV each trace was partitioned into one-second timeslices.
For each timeslice the number of unique TCP connections
operating between 10 and 40 Kbps during the timeslice,
between 40 and 100 Kbps, and greater than 100 Kbps were
tallied. The averages of the three tallies over the lifetime of
the trace appears in the last two columns. It can be seen in
this table that Group 2 gains its big advantage over Group 1
in its ability to support more concurrent flows consuming less
than 100 Kbps. Focusing on the connections that consumed



between 40 Kbps and 100 Kbps, Group 1 exhibits an average
of about 3 active connections in the upstream and between
1 and 2 connections in the downstream. Group 2 exhibits an
average of between 5 and 6 connections in the upstream and
just over 4 connections in the downstream.

Tables V and VI characterize the ten connections in each
trace that transferred the most data in the upstream and
downstream directions respectively. The throughput and loss
values are the mean values of the ten connections. The column
labeled Traffic % represents the percentage of total traffic
that was carried by the top ten connections. For example, in
trace 1 the top ten upstream connections, which represent only
0.6% of all upstream connections, carried 85.8% of all of the
upstream traffic associated with the torrent download. The data
in the bottom halves of these tables characterizes the reverse
flows associated with the top ten connections.

It is not possible to derive the traffic percentage values from
the throughput values. The throughput average of 41619 bps
for Trace 1 indicates that if the top 10 upstream connections
had been active for the duration of the entire trace they would
have produced an aggregate upstream throughput of 416.19
Kbps. The facts that the actual aggregate throughput was only
306 Kbps and that there were many other upstream connec-
tions demonstrate the top 10 were definitely not active for
the duration of the trace. The 85.8% figure was independently
derived from the trace data.

The reverse flow throughput values and up-
stream:downstream ratios again demonstrate that individual
BitTorrent connections are much more strongly symmetric
than uni-directional Web object downloads where directional
ratios of 72:1 would be normal. Note particularly that table
VI shows that in six of the eight traces the top ten traces in
the downstream direction actually carried more data upstream
than downstream. It is precisely this characteristic that causes
ten BitTorrent users to have a far more negative impact upon
competing traffic with real time requirements than would ten
users downloading very large Web objects.

C. The simulated BitTorrent workload

We saw an enormous range of traffic characteristics between
different torrents. Repeated downloads of the same torrent
shows that performance depends strongly on the characteristics
of the active set of peers and on the availability of unsolicited
inbound connections. For the results reported in this paper,
we configured the simulation to match the Group 1 traces.
We estimated the RTT for the Group 1 traces by finding the
time from when the client sends the first TCP segment (i.e., the
SYN) until when the peer replies with the SYN-ACK segment.
Using this method on traces 1-4, we found the average RTT
to be approximately 0.9 seconds. The simulated BitTorrent
workload that is used as described in the next section has the
following characteristics:

o Three active (i.e., always-on) flows in both directions.
o An average loss rate in either direction of 0.93%.
¢ An average upstream TCP throughput of 51 Kbps.

e An upstream to downstream throughput ratio of about
2.5.

« An aggregate upstream bandwidth consumption of about
350 Kbps.

e An upstream to downstream aggregate bandwidth con-
sumption ratio of approximately 1.5.

IV. SIMULATION OF BITTORRENT OVER DOCSIS

In previous work [30], [31], we described a simulation of the
DOCSIS MAC protocol implemented for the ns-2 simulation
system. The results presented in this section were obtained
by using that model augmented by a new BitTorrent traffic
model that was derived from analysis of the BitTorrent traces
described in the preceding section.

Model Parameters

US/DS bandwidth 5.12Mbps, 30.34Mbps

Preamble 80 bits, FEC overhead 8%, 4.7% (US/DS)

4 ticks per minislot

Default map time: 2 milliseconds (80 minislots per map)
Fragmentation On, MAP_LOOKAHEAD = 255 slots
Concatenation and piggybacking enabled

Backoff Start: 8 slots, Backoff stop: 128 slots

12 contention slots (minimum), 3 management slots

Web Traffic Model Parameters

Number Web Users: 150

Inter-page: pareto model, mean 10 and shape 2
Objects/page: pareto model, mean 3 and shape 1.5
Inter-object: pareto model, mean .5 and shape 1.5

Object size: pareto model, mean 12 (segments) shape 1.2

Fig. 2. DOCSIS and web client configuration

The simulated network is shown in figure 2. There are 400
cable modems (labeled CM-1 through CM-400) in the DOC-
SIS subnetwork. These share one downstream channel and one
upstream channel. The DOCSIS subnetwork is connected by
a simulated WAN to simulated Web and BitTorrent peers.

The BitTorrent users are assigned to the first CMs (i.e.,
beginning at CM1 through CMnumberBTs). The Web users
are assigned to the CMs following those assigned to BitTorrent
users. In all simulations, 150 CMs generated web-like traffic.

The emulated web users generate requests to web servers
(located at nodes S-1 through S-x) following the model
described in [32] using the parameters shown in figure 2.
The remaining CMs do not generate application data but
they transmit periodic DOCSIS management messages to the
CMTS. Refer to [30] for further details of the DOCSIS model.
To realistically model the impact of BitTorrent during peak
usage times, the background web traffic was calibrated to
consume approximately 60% of the upstream capacity when
no competing BitTorrent sources are active.

A. The BitTorrent Traffic Model

The BitTorrent traffic model consists of a set of TCP traffic
sources and sinks placed at a configurable number of selected



CMs. The BitTorrent peers of these CMs are located on the
nodes labeled BTServer-j. The aggregate measurement results
showed that it is common for BitTorrent clients operating
over cable networks to have 3-4 active duplex connections
that transfer the majority of the data. Our model establishes 3
concurrent connections between the client and three BitTorrent
peers that are randomly selected from the BTServer-j set. We
use the ns-2 TCP/Sack model which generates traffic in one
direction. To model a full duplex TCP traffic, we establish
two one-way TCP/Sack connections, one in each direction. We
refer to these matching connections as TCP connection pairs.
This approach is operationally different than true BitTorrent
duplex flows because it generates bi-directional standalone
ACK streams. Nevertheless, we argue that it is the volume
of upstream traffic and not the fact that it carried in duplex
flows in BitTorrent that is the primary impact on competing
flows.

An exponential traffic generator is attached to each TCP
traffic source. Previous research has found that the average
torrent size is about 760 Mbytes [25]. The generator is
configured to send an average of 1 Gbyte of data during its
on state. When the transfer is complete, the generator pauses
for a short time (1 second on average) and then begins the
next download. The parameters associated with the exponential
source are the packet size, the burst time, the idle time and
the rate. During the on state a BitTorrent source sends at
rate bps for burst time. We have implemented an adaptation
algorithm that dynamically adjusts the rate parameter which
in turn adjusts the traffic generator’s TCP throughput.

To model variations in the speed of the local access
networks of the BitTorrent peers, the upstream and down-
stream link capacity between between nodes BT _gateway and
BTServerj were randomly selected using a uniform distribu-
tion in the range of [64 Kbps,1 Mbps] and [1 Mbps,6 Mbps]
respectively. These ranges capture the range of likely Internet
access broadband connection speeds. The link propagation
delay was also selected randomly in the range [20,100] mil-
liseconds. The queue size in both directions at the BT Serverj
nodes was uniformly distributed between [20,40] packets.

B. BitTorrent traffic adaptation algorithm

When a simulated BitTorrent connection is created, it is
endowed with a target asymmetry ratio which is the desired
ratio of upstream to downstream throughput. These values are
randomly selected with a mean of approximately 1.7. Each
direction is configured with an initial rate randomly selected
between 50.0 Kbps and 500 Kbps. These rates govern the rate
at which the generators attempt to inject data into the simulated
network, but TCP feedback dynamics control the actual rate
at which data is injected.

Using the ns-2 TCL scripting support, a TCL control
function is created for each upstream/downstream pair of
TCP/Sack connections between a given BitTorrent client and a
peer. The objective of the adaptation algorithm is to adapt the
presently configured sending rate of a TCP connection pair
to meet a target upstream to downstream throughput ratio.

Periodically (we found five seconds to be satisfactory), the
control algorithm runs and computes the observed upstream
and downstream throughput and the observed asymmetry ratio
for the preceding five seconds.

If the observed asymmetry ratio exceeds the target asym-
metry ratio, there is excess throughput in the upstream di-
rection. In this case the configured downstream throughput is
multiplied by 1.125. If this causes the configured downstream
throughput to exceed the maximum downstream throughput, it
is clamped to the maximum downstream throughput, and the
configured upstream throughput is divided by 2. Analogous
adjustments are performed when the observed asymmetry ratio
is too small.

C. Assessing BitTorrent Impact

To show the impact that BitTorrent users have on other users
that are not running BitTorrent, we captured two application
level metrics between machines not generating BitTorrent
traffic. One metric estimates web browsing performance and
the other estimates VoIP performance.

1) Assessing web browsing quality: It was reported in [33]
that response times longer than one second are likely to
exceed the threshold of human perceived satisfaction and that
users become frustrated when page response time exceeds 10
seconds. We have developed a performance monitor in ns-2
that monitors the time it takes to download an average size web
object (roughly 15 Kbytes according to [32]) from a server.
The typical web page consists of approximately 10 objects
[32]. Based on these results, we define a performance guideline
which assumes a network is likely to exceed the typical human
user tolerance for poor performance when the average object
download time exceeds 1 second.

The CM labeled test client 1 in figure 1 is used to monitor
web response times (WRT). Periodically, test client 1 requests
a simulated web object of 15 Kbytes in size from web server
S — 1. The WRT application located at the test client 1 CM
obtains a response time sample for each iteration.

2) Assessing VoIP Quality: VoIP quality is determined by a
complex relationship involving latency, loss, codec capability,
and the jitter buffer size. The E-model is a mathematical model
that captures this relationship to provide an estimate of call
quality (referred to as the Mean Opinion Score or MOS) [34].
However, there are several ‘rules-of-thumb’ that provide useful
guidelines. One well known rule-of-thumb requires that in
order for a call to be ’toll quality’, the *'mouth-to-ear’ latency
must be less than 150 milliseconds [35]. Further, telephony is
considered unusable if the latency exceeds 400 milliseconds.
The affect of packet loss on call quality is highly dependent on
the codec, in particular on the packet loss concealment (PLC)
technique. If PLC is not used, loss rates over 1% will prohibit
toll quality calls [35].

For the results described in this paper, we assess VoIP
quality using the maximum mouth-to-ear (MTE) guidelines.
We approximate the average MTE delay as the sum of the
average one-way packet latency and jitter. Our rationale is that
an optimally configured VoIP client adjusts its playout buffer



to match the level of the jitter observed over the path. We set
the maximum tolerated MTE delay to be 150 milliseconds.
Since the metric does not take into account impairment caused
by packet loss, the assessment is a conservative performance
guideline.

The CM labeled test client 2 is configured to send a periodic
stream of packets in a manner similar to a VoIP flow. A CBR
traffic agent was configured on test client 2 to send 350 bytes
every 0.05 seconds. The bandwidth consumed is similar to the
bandwidth consumed by a G.711 VoIP flow. Various measures
were obtained from this flow including the latency, jitter, and
loss rate. The jitter was computed by taking the average of
per packet latency differences.

D. Experimental configuration

The DOCSIS simulation model settings are summarized in
figure 2. Both piggybacking and concatenation were enabled.
The physical layer bit rate of the upstream channel was set to
5.12 Mbps and the downstream channel set to 30.34 Mbps.
Service rates were unconstrained so that the CMTS and each
CM could send as fast as the channel bit rate and the DOCSIS
MAC protocol allowed. Experiments consisted of five runs
with each run lasting 500 seconds of simulated time.

E. Comparison with BitTorrent traces

Table VII shows the mean bandwidth consumed by sim-
ulated BitTorrent users in the upstream and downstream di-
rections. It can be observed that the adaptation algorithm is
successful in producing asymmetry ratios that are consistent
with those observed in the traces. Because the simulated Bit-
Torrent users are not rate limited, one might expect significant
differences in throughput. However, the measured results in
Table IV suggest an average upstream consumption by Bit-
Torrent of 350 Kbps. The simulations show that performance
is comparable when approximately 6 BitTorrent users are
active. Therefore, we feel that the essential characteristics
of workloads produced by the simulation are consistent with
those observed in the traces.

BT-CMs | Upstream | Downstream Upstream:

(bps) (bps) | Downstream
2 497676 250405 1.9
10 224258 134298 1.67
20 123769 89508 1.38
30 85677 78914 1.1
40 65483 61759 1.1

TABLE VII

PER HOST BITTORRENT THROUGHPUT

F. Channel utilization and BitTorrent performance

Figure 3 shows the upstream and downstream channel
utilization as a function of the number of BitTorrent CMs.
The results suggest that the upstream channel saturates when
approximately 15 BitTorrent CMs are active. The downstream
utilization never exceeds 31%.
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Figure 4 shows the average TCP connection throughput in
the upstream and downstream directions for the simulation
experiments. The rate adaptation algorithm achieves approxi-
mately the desired level of asymmetry between the upstream
and downstream BitTorrent throughput (the asymLevel was set
to approximately 1.7). The ratio converges to a value of 1 (i.e.,
symmetric throughputs in the upstream and downstream direc-
tions) under extreme loads when the bottlenecked upstream
channel effectively rate limits the downstream channel.

G. Impact on non-BitTorrent users

Figure 5 illustrates the mean of the web response times
gathered by the CM identified as Test client I in figure 1.
The web response time statistic increased from a value of
0.25 seconds when no BitTorrent users were active to 0.65
seconds when 15 BitTorrent users were active. This suggests
that 15 BitTorrent users can cause a drop in performance by a
factor of 2.5. When the number of BitTorrent users exceeds 30
performance degrades beyond the 1 second metric threshold.
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Figure 6 illustrates the latency and the jitter associated with
an upstream VoIP-like flow. The latency more than triples
when 10 BitTorrent users become active. The jitter increases
from a value of 0.01 seconds to 0.06 seconds when 20
BitTorrent users are active. The effective mouth-to-ear delay
exceeds the performance threshold of 150 milliseconds when
15 or more BitTorrent users are active.
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V. CONCLUSION

In this paper we have assessed the impact of BitTorrent on
DOCSIS cable networks. Specific contributions of our work
include:

« We have demonstrated that downloads of widely traded
torrents can produce large volumes of upstream traffic.

« We have developed an empirically derived model of such
traffic.

« We have implemented a BitTorrent traffic generator in
ns-2 that produces traffic loads having characteristics
consistent with traced traffic.

« We have provided simulation-based evidence that a small
number of BitTorrent users in a DOCSIS-based network
can significantly impact other users who are not running
BitTorrent.

Our study focused on current DOCSIS deployments that
involve upstream channel rates of 5.12 Mbps. The simulation
results were based on a configuration that did not impose ser-
vice rate restrictions on the CMs. We repeated the experiment
with upstream services rates ranging from 256 Kbps to 2 Mbps
and with corresponding downstream service rates ranging from
1 Mbps to 10 Mbps. There was no noticeable improvement
until the upstream service rates were 256 Kbps or lower. The
improvements were evident only in runs involving fewer than
10 BitTorrent users because, as shown in Table VII, BitTorrent
consumes less than 256 Kbps when there are 10 or more
competing users.

Cable system operators are moving towards deployments
based on DOCSIS 3.0 equipment that will provide greater
than 100 Mbps upstream channel rates. Applications such as
BitTorrent that reward users for distributing content at high
data rates will continue to consume a disproportionate share
of available bandwidth. This fact motivates our continued
research in developing innovative approaches for managing
bandwidth in current and future broadband access networks.

In ongoing work we are seeking to develop algorithms that
can reliably identify high bandwidth data flows associated with
peer to peer protocols and manage their bandwidth consump-
tion. Bandwidth management strategies under consideration
involve the development of autonomic support in the DOCSIS
MAC protocol for dynamically configuring the backoff range
of each CM based upon the time varying characteristics of the
network.
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