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Abstract—In medical domain, data features often con-
tain missing values. This can create serious bias in the
predictive modeling. Typical standard data mining methods
often produce poor performance measures. In this paper,
we propose a new method to simultaneously classify large
datasets and reduce the effects of missing values. The
proposed method is based on a multilevel framework of the
cost-sensitive SVM and the expected maximization impu-
tation method for missing values, which relies on iterated
regression analyses. We compare classification results of
multilevel SVM-based algorithms on public benchmark
datasets with imbalanced classes and missing values as
well as real data in health applications, and show that
our multilevel SVM-based method produces fast, and more
accurate and robust classification results.

I. THE ROLE OF PREDICTIVE MODELING IN
HEALTHCARE

Modern healthcare can be characterized as evidence-
driven and model-assisted [1]. In an ideal situation,
every decision in the clinical environment should be
supported by a statistical model predicting risks and
positive outcomes. This model may have a form of a
simplified risk-assessment formula [2], or a sophisticated
machine learning tool [3], [4]. In either case, it is based
on a query of relevant clinical and operational history.

In practice, comprehensive medical information is
stored in multiple databases, with different formats and
rules of access. Due to considerations of patient privacy,
and the proprietary nature of electronic medical records
[5], the databases cannot be queried continuously. Every
instance of data acquisition and integration is a separate
effort that is cost-effective only when the resulting
predictive model shows high quality. Thus, progress in
evidence-driven healthcare depends on how well state-
of-the art algorithms of machine learning are adapted to
clinical data.

We note that classical computer science issues, such
as scalability, or convergence rate are rarely a major
issue for healthcare applications. Instead, an algorithm
is ranked based on its ability to process raw medical

data, with such problematic features as sparsity, missing
entries, noise and imbalanced outputs. Because of the
encounter nature of patient-provider interaction, medical
data is inherently sparse: when a clinical encounter
occurs, the number of and contents of labels attached
to it vary widely [6]; outside of an encounter, the state
of the patient is unknown. The outcomes of interest
in classification problems are imbalanced, because, as
a rule, healthcare analytics is motivated by rare events
such as healthcare emergencies, severe chronic condi-
tions, gaps and bottlenecks in access to care. The extent
to which medical data is problematic may not be obvious
from the perspective of a local healthcare provider (such
as a single doctor); by definition they have access to
all knowledge they ever use. We view this paper as
a short, high-level primer on using advanced methods
of machine learning to overcome the difficulties that
emerge after multiple datasets are integrated for analysis
and prediction.

This work was prompted by several projects com-
pleted with the Division of Applied Research and Clini-
cal Informatics, Dept. of Data Science; Geisinger Health
System. The routine activity of Data Science consists
of medium-scope predictive projects on a combination
of patient biometrics, pathology lab results, clinical en-
counter data, medical insurance data (available directly
from Geisinger Health Plan) and externally assigned
aggregate metrics for patients’ general lifestyle risks,
compliance with treatment regime, and loyalty to a
particular provider.

For the first motivating example (Example 1), we
use our 2014 feasibility study [7] of merging insurance
information (6 aggregate features, based on the history
of claims and payments) together with clinical encounter
information (10-20 features chosen by hand from patient
biometrics, medications and diagnostic codes). The goal
of the initial study was to predict the financial risk
for a particular patient (a common metric in insur-
ance practice, derived as a ratio of individual expenses



and average expenses for a large demographic group).
Furthermore, we wanted to see how addition of the
clinical information changes the predictive power of the
model, thus making a case for existence of high-risk
patients that are invisible to claims-based analysis. We
used a standard clustering technique, k-nearest neighbors
with empirically selected weighting, to achieve the basic
results.

For Example 2, we use our preliminary investigation
of patients’ response to public outreach [8], such as
annual flu awareness campaigns. We included basic de-
mographic and clinical information on patients targeted
by 35 such campaigns into the model predicting whether
a given patient is likely to respond to the reminder,
or to choose not to get vaccinated, or use a different
provider. Again, our core predictive model was standard:
logistic regression with empirically selected weighting
of training data.

We now pose a question: how much more effective
would the predictive models be in each case with the use
of an advanced machine learning algorithm developed
with awareness of sparsity and class skewness (imbal-
ance) in data?

II. SUPPORT VECTOR MACHINE ALGORITHMS FOR
MEDICAL DATA

Given a training set J = {(xi, yi)}li=1, that is a set of
data points with known labels, where (xi, yi) ∈ Rn+1,
and l and n are the numbers of data points and features,
respectively, and yi ∈ {−1, 1} denotes the class label
for each data point i in J . We denote by C− and C+,
the ”majority” (points with yi = +1) and “minority”
(points with yi = −1) classes respectively such that
J = C+ ∪C−.

A. Support Vector Machines

The support vector machine (SVM) solves the follow-
ing max-margin problem:

min
1

2
‖w‖2 + C

l∑
i=1

ξi (1a)

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi i = 1, . . . , l (1b)

ξi ≥ 0 i = 1, . . . , l (1c)

where the optimal margin is defined by the parameters
w and b. The training data points xi are mapped into
a higher dimensional space through function φ : Rn →
Rm (m ≥ n). The misclassified points are penalized
using the term slack variables ξi (i ∈ {1, . . . , l}) and the
parameter C > 0 controls the magnitude of penalization.
Hence, this formulation is called as soft margin SVM.
The primal formulation is usually transformed to the La-
grangian dual problem using different algorithms. One of
the most popular is the sequential minimal optimization

(SMO) which is implemented in the LIBSVM tool [9],
since it is fast and yields reliable convergence.

B. Weighted Support Vector Machines

A cost-sensitive extension of SVM, developed to
cope with imbalanced data, is known as weighted SVM
(WSVM) [10]. The main idea is to consider weighting
scheme in learning such that the WSVM algorithm
builds the decision hyperplane based on the relative
contribution of data points in training. In contrast to the
standard SVM, the penalization costs are different for
the positive (C+) and negative (C−) classes:

min
1

2
‖w‖2 + C+

n+∑
{i|yi=+1}

ξi + C−
n−∑

{j|yj=−1}

ξj

(2a)

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi i = 1, . . . , l (2b)

ξi ≥ 0 i = 1, . . . , l (2c)

The formulations (1) and (2) are solved through the
Karush-Kuhn-Tucker conditions. The Gaussian kernel
function (radial basis function, RBF) is used in the
dual formulation of (W)SVMs since this kernel function
usually results into superior performance for many clas-
sification problems [11, 12]. Parameter tuning is required
to set optimal or near optimal C, C+, C−, and kernel
function parameters (e.g. bandwidth parameter for RBF
kernel function) to achieve good results for (W)SVM.
This process becomes problematic and time-consuming
particularly when the size of data is very large. Hence
we aim to develop an efficient and effective classification
method, called the Multilevel (W)SVM, that is scalable
and works with imbalanced healthcare data.

C. Multilevel Support Vector Machines

The proposed algorithm belongs to the family of
multilevel optimization strategies [13] whose goal is to
approximate the system at multiple scales of coarseness
and to obtain a final solution by combining the infor-
mation from different scales. The multilevel framework
for SVM [14] scales efficiently for large classification
problems whose hierarchy of coarser representations is
constructed based on the approximated k-nearest neigh-
bors graphs (AkNN). This method consists of three main
phases:
• The coarsening phase. A gradual coarsening of

the training set is constructed using fast point
selection method [15] in AkNN graph. However,
we found that ensuring a uniform coverage of the
points can lead to much better results than finding
an independent set of points (nodes in AkNN) as
was suggested in [15]. Thus, we extended the set
of coarse points by setting a parameter for the



minimum number of points that in our experiments
was set to 50% of the fine data points.

• Supervised support vector initial learning. After
the hierarchy is created, the support vectors learn-
ing is performed at the coarsest level, where the
number of data points is sufficiently small.

• The uncoarsening phase. Support vectors, and
classifier are projected throughout the hierarchy
from the coarsest to the finest levels. At each level,
the solution to the current fine level is updated and
optimized based on the solution of the previous
coarse level. The locally optimal support vectors
are obtained by gradual refinement of the projected
support vectors from the coarse level.

For imbalanced data, the WSVM can easily be adopted
as the base classifier for multilevel framework (ML-
WSVM). The regular SVM does not perform well on
imbalanced data because it tends to train models with
respect to the majority class and technically ignores the
minority class. However, the effect of imbalanced issue
decreases while using multilevel framework since we
prevent creating very small coarse sets for the minority
class even if the majority class can still be coarsened.

Often, methods for imbalanced classification demon-
strate poor performance on data with missing values
(such as [16]) that is a frequent situation in healthcare
data. Therefore, we apply imputation methods prior
the classification model. Such imputation methods have
been well studied in statistical analysis and machine
learning domains [17–21]. Problems with missing data
can be categorized into three types: data is completely
at random (MCAR), missing at random (MAR), and not
missing at random (NMAR). MCAR occurs while any
feature of a data instance is missing completely random
and is independent of the values of other features. Data
is MAR , when the data instance with missing feature is
dependent on the value of one or more of the instances
other features. NMAR occurs when the data instance
with missing feature is dependent on the value of the
other missing features. Even though MCAR is more
desirable, in many real-world problems, MAR occurs
frequently in practice [17].

In the imputation methods, the goal is to substitute a
missing value with a meaningful estimation [20]. This
can be done either directly from the information on the
dataset or by constructing a predictive model for this
purpose. Standard methods for imputation are mean im-
putation [22], kNN imputation [23], Bayesian principal
component analysis (BPCA) imputation [24], and the
expectation maximization (EM) [25]. We apply the EM
method which is one of the most successful imputation
methods [26]. The EM method iteratively applies linear
regression analysis and fits a new linear to the estimated

data until a local optimum is achieved [25, 27]. In
the regularized adaption of EM method, the conditional
maximum likelihood estimation of regression parameters
is replaced in the conventional EM algorithm [28].

D. Regularized Expectation-Maximization

In our preprocessing when the data contain many
missing values, we apply the EM algorithm. It iteratively
calculates the maximum-likelihood (ML) estimates of
parameters by exploring the relationship between the
complete data and the incomplete data (with missing fea-
tures) [29]. In many cases, it has been demonstrated that
the EM algorithm achieves reliable global convergence,
economical storage. It is not computationally expensive,
and can be easily implemented [30]. In EM we maximize
the objective of the log-likelihood function

L(Θ;χ) =

n∑
i=1

logp(xi|Θ), (3a)

where χ = {xi|i = 1, ..., n} are the observations with
independent distribuation p(x) parametrized by Θ.

The regularized EM algorithm (REM) is developed
to control the level of uncertainty associated to missing
values [31]. The main idea is to regularize the likelihood
function according to the mutual relationship between
the observations and the missing data with little un-
certainty and maximum information. Intuitively, it is
desirable to select the missing data that has a high
probabilistic association with the observations, which
shows that there is little uncertainty on the missing
data given the observations. It performs linear regression
iteratively for the imputation of missing values. The
REM algorithm optimizes the penalized likelihood as
follows:

L̃(Θ;χ) = L(Θ;χ) + γP (χ,Υ|Θ), (4a)

where P is the distribution function of the complete
data given Θ. The trade-off between the degree of
regularization of the solution and the likelihood function
is controlled by the so-called regularization parameter
that is represented by γ that [31]. In addition to reducing
the uncertainty of missing data, the REM preserves the
advantage of the standard EM method. This method is
very efficient for over-complicated models.

E. Performance Measures

Classification algorithms are evaluated based on the
performance measures, which are calculated from the
confusion matrix (I). For binary classification prob-
lems, the performance measures are defined as accuracy
(ACC), sensitivity (SN), specificity (SP), and G-mean,
namely,

SN =
TP

TP + FN
, SP =

TN

TN + FP
(5)



TABLE I
CONFUSION MATRIX

Positive class Negative Class

Positive Class True Positive False Positive
(TP) (FP)

Negative Class False Negative True Negative
(FN) (TN)

G-mean =
√

SP ∗ SN (6)

ACC =
TP + TN

FP + TN + TP + FN
. (7)

III. COMPUTATIONAL RESULTS

We evaluate the proposed classification framework
on academic (UCI [32], and the cod-rna dataset [33]),
and real-life binary classification benchmarks [7], [8].
Coarsest and refinement (W)SVM models are solved
using LIBSVM-3.18 [9], and the FLANN library [34] is
used to create the AkNN graphs. Multilevel frameworks,
data processing and further scripting are implemented in
MATLAB 2012a. The C4.5, Naive Bayes (NB), Logistic
Regression (LR), and 5-Nearest Neighbor (5NN) are
implemented using WEKA interfaced with MATLAB. A
typical 10-fold cross validation setup is used. We create
missing values on the academic data training sets by
discarding the features randomly. The misclassification
penalty or weights are selected as inversely proportional
to the size of each class in our implementation. As
a preprocessing step, the whole data is normalized
before classification. The nested uniform design (UD)
is performed on the training data as the model selec-
tion for (W)SVM [35]. The UD methodology is very
successful for model selection in supervised learning
[36]. The close-to-optimal parameter set is achieved in
an iterative nested process [35]. The optimal parameter
set is selected based on G-mean maximization, since
data might be imbalanced. A 9- and 5-point run design
is performed for the first and second stages of the nested
UD due to its superiority for the UCI data [35], and the
performance measures such as sensitivity, specificity, G-
mean and accuracy are calculated on the testing data.

TABLE II
ACADEMIC DATA SETS.

Dataset rimb nf |J | |C+| |C−|
Twonorm 0.50 20 7400 3703 3697
Letter26 0.96 16 20000 734 19266

Ringnorm 0.50 20 7400 3664 3736
Cod-rna 0.67 8 59535 19845 39690

Clean (Musk) 0.85 166 6598 1017 5581
Advertisement 0.86 1558 3279 459 2820

Nursery 0.67 8 12960 4320 8640
Hypothyroid 0.94 21 3919 240 3679

Buzz 0.80 77 140707 27775 112932

A. Academic data sets

We compared popular methods with the proposed
ML(W)SVM to classify imperfect data. Table III shows
the comparative results of MLSVM, MLWSVM, SVM,
WSVM, Naive Bayes, C4.5, LR, and 5NN algorithms
for academic data sets. These methods are examined
for different missing value ratios selected as 5%, 10%,
20%, and 40%. We implemented the REM method for
missing data imputation [25]. The highest values are
shown in boldface among all methods for their related
missing value levels. It is clear from the accumulation of
boldface results, MLWSVM and WSVM perform better
than the other methods in general for all missing vaule
ratios. In fact, MLWSVM and WSVM results into higher
G-mean values in 19 out of 36 dataset/rmv combinations
followed by MLSVM and SVM with 13 out of 36.
Moreover, the ML(W)SVM techniques achieve faster
computational time compared to the standard (W)SVM
(Table IV).

TABLE IV
COMPUTATIONAL TIME ( SEC.)

MLSVM SVM MLWSVM WSVM
Twonorm 6 29 6 29

Letter 37 145 39 146
Ringnorm 5 26 5 27
Cod-rna 300 1865 315 1891
Clean 25 103 23 90

Advertiesment 99 228 101 232
Nursery 26 188 32 193

Hypothyroid 2 3 2 3
Buzz 3915 26963 4705 27732

B. Healthcare data sets

We present the results of comparison of classification
algorithms on the real-life healthcare data sets. Table V
demonstrates the results on Example 1 (see Section I),
a classification task of assigning a patient in a correct
group by financial risk, which are ordered in ascending
manner from group 1 with the lowest level of risk, to
group 5 with the highest level of risk.

The motivation behind the original study was to
determine how much integration of the medical and
financial data changes the outcomes of clustering and
classification operations based on financial data alone.
For that purpose, modest precision was sufficient; we
used a logistic (linear) regression (LR) approach (im-
plemented as mnrfit in MATLAB). We are comparing
the accuracy of it with the best results obtained by
ML(W)SVM. The strategy ”one-against-all” is used for
multi-class classification. This strategy performs training
a classifier per class with the data points of that class as
positive class and the rest of the data points are trained
as negative class.



TABLE III
COMPARATIVE G-MEAN RESULTS FOR ML(W)SVM AGAINST THE REGULAR SVM, WSVM, NB, C4.5, 5NN, AND LR ON ACADEMIC

DATASETS FOR DIFFERENT FRACTIONS OF MISSING VALUES (rmv ).

Dataset rmv MLSVM MLWSVM SVM WSVM C4.5 5NN NB LR

Twonorm

5% 0.98 0.98 0.98 0.98 0.86 0.97 0.98 0.98
10% 0.98 0.98 0.97 0.97 0.87 0.97 0.97 0.97
20% 0.98 0.98 0.98 0.98 0.88 0.97 0.97 0.98
40% 0.97 0.97 0.97 0.97 0.89 0.97 0.98 0.98

Letter

5% 0.97 1.00 0.99 0.99 0.97 0.98 0.86 0.81
10% 0.98 1.00 0.98 0.99 0.98 0.98 0.86 0.80
20% 1.00 1.00 0.99 0.99 0.97 0.98 0.87 0.80
40% 0.95 0.97 0.96 0.99 0.97 0.98 0.88 0.83

Ringorm

5% 0.97 0.98 0.97 0.98 0.91 0.61 0.99 0.76
10% 0.98 0.98 0.99 0.99 0.91 0.62 0.98 0.76
20% 0.98 0.98 0.97 0.98 0.91 0.62 0.98 0.76
40% 0.98 0.98 0.97 0.98 0.91 0.62 0.98 0.76

Cod-rna

5% 0.95 0.96 0.96 0.96 0.95 0.92 0.66 0.93
10% 0.95 0.96 0.95 0.96 0.95 0.91 0.66 0.92
20% 0.95 0.96 0.95 0.95 0.94 0.91 0.67 0.92
40% 0.95 0.95 0.95 0.95 0.93 0.90 0.68 0.91

Clean

5% 1.00 0.99 0.98 1.00 0.83 0.92 0.79 0.89
10% 0.99 1.00 0.99 1.00 0.83 0.91 0.79 0.89
20% 1.00 1.00 1.00 1.00 0.83 0.91 0.79 0.89
40% 1.00 1.00 1.00 1.00 0.82 0.92 0.79 0.89

Advertisement

5% 0.87 0.87 0.87 0.87 0.92 0.81 0.60 0.82
10% 0.87 0.87 0.86 0.86 0.86 0.85 0.62 0.82
20% 0.83 0.85 0.83 0.85 0.89 0.83 0.61 0.83
40% 0.84 0.86 0.87 0.81 0.91 0.85 0.62 0.82

Nursery

5% 0.99 0.99 1.00 1.00 1.00 1.00 0.00 1.00
10% 0.99 0.99 1.00 1.00 1.00 1.00 0.00 1.00
20% 0.96 0.96 1.00 1.00 1.00 1.00 0.00 1.00
40% 0.92 0.92 1.00 1.00 1.00 0.99 0.46 1.00

Hypothyroid

5% 0.83 0.87 0.81 0.87 0.96 0.76 0.97 0.88
10% 0.85 0.86 0.78 0.86 0.96 0.76 0.96 0.89
20% 0.84 0.86 0.72 0.86 0.96 0.75 0.97 0.90
40% 0.86 0.88 0.84 0.88 0.96 0.76 0.97 0.89

Buzz

5% 0.94 0.94 0.94 0.94 0.94 0.93 0.89 0.94
10% 0.94 0.94 0.94 0.94 0.94 0.93 0.89 0.94
20% 0.92 0.94 0.93 0.94 0.94 0.93 0.88 0.93
40% 0.93 0.93 0.93 0.93 0.94 0.94 0.86 0.94

TABLE V
ACCURACY OF FINANCIAL RISK PROBLEM WITH FIVE RISK

CLASSES (EXAMPLE 1)

Class 1 2 3 4 5
LR 0.58 0.54 0.53 0.51 0.59

MLSVM 0.73 0.50 0.44 0.50 0.71

To interpret the results, we note that correct identifi-
cation of intermediate risk categories is a very difficult
problem in medical informatics. To our knowledge,
there is no good definition of ”average health”, either
evidence-driven or philosophical, that would help an
expert to identify such patient features that do not
indicate an acute crisis, or an almost certain safety
from crisis. Accordingly, it is not surprising that neither
approach does well on the risk categories 2..4; there is
also not a lot of motivation to improve the model there.
On the other hand, it is important to identify and predict
the very low-risk patients (knowing that status ahead of
time allows resource re-allocation leading to savings and

improved service for everyone) and the very high-risk
patients (so that clinical and financial resources could
be prepared for the forthcoming crisis).

Accordingly, it is important that the use of an ad-
vanced method of machine learning changes the quality
of prediction from almost worthless (’toss a coin’) to
workable (accuracy of 0.7).

In Table VI, we compare results for the widely used
basic approach and ML(W)SVM prediction for Example
2 (see Section I), a study of patient’s response to hospital
flu outreach. In this problem, the goal is to find a binary
classifier that will predict whether the patient will get
vaccinated after reminder, or not (this includes using
a different provider for vaccination). In the preliminary
study, we used adaptive linear regression model (LASSO
for adaptive selection of features, logistic regression on
actual prediction).

Response to outreach is not a crucial life-or-death
issue, we are performing this study to see if predictive
modeling can assist with resource allocation (which
patients to contact, how much medical personnel effort



TABLE VI
COMPARISON OF MULTILEVEL WSVM AGAINST MULTILEVEL
SVM AND ADAPTIVE LOGISTIC REGRESSION (LR). IMPROVED

RESULTS ARE IN BOLD.

G-mean SN SP ACC
Adaptive LR 0.7516 0.8903 0.6345 0.7619

MLSVM 0.8012 0.9750 0.6583 0.8496
MLWSVM 0.8016 0.9739 0.6598 0.8495

to dedicate to outreach and then vaccination). Arguably,
accuracy is more important than specificity here. Even
the basic results (using linear regression) were met with
approval the CPSL (Care Patient Service Line: a division
responsible for coordinating efforts of local, small-scale
healthcare providers operating under Geisinger). SVM
methods (almost 10 percent improvement) provide ad-
ditional justification for the use of machine learning on
merged data to assist planning in clinical practice.

IV. CONCLUSION

Large-scale data, missing or imperfect features, skew-
ness distribution of classes are common challenges in
pattern recognition of many healthcare problems. We
have successfully extended a powerful machine learning
technique, support vector machines, to the scalable
multilevel framework of cost-sensitive learning SVM
to deal with imbalanced classification problems. Our
multilevel framework substantially improves the com-
putational time without losing the quality of classifiers
for large-scale datasets. We have shown that MLWSVM
produces superior results than MLSVM and the regular
SVM methods in most cases. This work can be extended
to tackle other classification problems with large-scale
imbalanced data (combined from different sources) with
missing features in healthcare and engineering applica-
tions.

From the perspective of evidence-driven healthcare,
our work shows that application of cutting edge ma-
chine learning techniques (in this case, fast multilevel
classifiers) makes enough of a difference to justify the
additional development effort for typical examples from
clinical practice. While the improvements in precision
and specificity we show in this study are both under
10% and are modest in general perspective, the result in
healthcare is significant.

To our knowledge, such complex combined behav-
ioral/operational phenomena as inference of financial
risk from medical history (Example 1), or prediction of
effectiveness of public outreach (Example 2), don’t have
a satisfactory casual explanation. The classical (1990s)
clinical practice offered two equally unsatisfactory op-
tions: not having a capability for prediction at all, or
relying on very basic statistical techniques (based on a
single data source, with very high rate of false-positive

classification outcomes). The existing mature models
(such as actuarial projections of financial risk) do not
benefit from integration of data from multiple sources,
and may, in fact, turn out to be ineffective outside of their
scope in patient population and metrics of interest (as we
have shown in [7]). Thus, in the modern clinical practice
we have to rely on newly developed machine learning
tools, tuned on data from multiple sources. Thus, our
work can also be extended to handle other classification
problems on massive, multi-format medical data.

REFERENCES

[1] S. Foldy, “National public health informatics,
united states,” in Public Health Informatics and
Information Systems. Springer, 2014, pp. 573–
601.

[2] L. R. Haas, P. Y. Takahashi, N. D. Shah, R. J.
Stroebel, M. E. Bernard, D. M. Finnie, and J. M.
Naessens, “Risk-stratification methods for identify-
ing patients for care coordination.” The American
journal of managed care, vol. 19, no. 9, pp. 725–
732, 2013.

[3] K. Plis, R. Bunescu, C. Marling, J. Shubrook,
and F. Schwartz, “A machine learning approach
to predicting blood glucose levels for diabetes
management,” Modern Artificial Intelligence for
Health Analytics. Papers from the AAAI-14, 2014.

[4] L. K. Woolery and J. Grzymala-Busse, “Machine
learning for an expert system to predict preterm
birth risk,” Journal of the American Medical In-
formatics Association, vol. 1, no. 6, pp. 439–446,
1994.

[5] E. Larson, T. Bratts, J. Zwanziger, and P. Stone, “A
survey of irb process in 68 us hospitals,” Journal of
Nursing Scholarship, vol. 36, no. 3, pp. 260–264,
2004.

[6] C. Snomed, “Systematized nomenclature of
medicine-clinical terms,” International Health
Terminology Standards Development Organisation,
2011.

[7] O. Roderick, “Why risk models and access to large
data should work together: tangible advantages to
merging clinical and claims data,” Technical report,
DARCI: Data Science, Geisinger Health System,
2014.

[8] ——, “Predictive model for response to medical
outreach,” Technical report, DARCI: Data Science,
Geisinger Health System, 2015.

[9] C.-C. Chang and C.-J. Lin, “Libsvm: a library for
support vector machines,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 2,
no. 3, p. 27, 2011.

[10] K. Veropoulos, C. Campbell, N. Cristianini et al.,
“Controlling the sensitivity of support vector ma-



chines,” in Proceedings of the International Joint
Conference on Artificial Intelligence, vol. 1999,
1999, pp. 55–60.

[11] F. E. Tay and L. Cao, “Application of support vec-
tor machines in financial time series forecasting,”
Omega: The International Journal of Management
Science, vol. 29, no. 4, pp. 309–317, 2001.

[12] P. Xanthopoulos and T. Razzaghi, “A weighted
support vector machine method for control chart
pattern recognition,” Computers & Industrial En-
gineering, vol. 70, pp. 134–149, 2014.

[13] A. Brandt and D. Ron, “Chapter 1 : Multigrid
solvers and multilevel optimization strategies,” in
Multilevel Optimization and VLSICAD, J. Cong
and J. R. Shinnerl, Eds. Kluwer, 2003.

[14] T. Razzaghi and I. Safro, “Fast multilevel support
vector machines,” Preprint ArXiv, 2014.

[15] S. Sakellaridi, H. ren Fang, and Y. Saad, “Graph-
based multilevel dimensionality reduction with ap-
plications to eigenfaces and latent semantic index-
ing,” in Machine Learning and Applications, 2008.
ICMLA ’08. Seventh International Conference on,
Dec 2008, pp. 194–200.

[16] A. Farhangfar, L. Kurgan, and J. Dy, “Impact of
imputation of missing values on classification error
for discrete data,” Pattern Recognition, vol. 41,
no. 12, pp. 3692–3705, 2008.

[17] M. Ghannad-Rezaie, H. Soltanian-Zadeh, H. Ying,
and M. Dong, “Selection–fusion approach for clas-
sification of datasets with missing values,” Pattern
recognition, vol. 43, no. 6, pp. 2340–2350, 2010.

[18] R. J. Little and D. B. Rubin, “Statistical analysis
with missing data,” 2002.

[19] J. L. Schafer, Analysis of incomplete multivariate
data. CRC press, 2010.

[20] P. J. Garcı́a-Laencina, J.-L. Sancho-Gómez, and
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