Epidemics on Networks

Analysis of infection spread:
• In theory we should consider all biological processes
• In practice we can only model them because of the complexity of the problem

S(usceptible)-I(nfected) Model

Someone who doesn’t have the disease but potentially could catch one if comes into contact with infected individual

Someone who has the disease and can potentially pass it to susceptible individual if they come into contact

Model 1: mass-action approximation (any individual has equal chances to come into contact with every other)
Model 2: network-based (limited possible number of contacts)

Anderson McKendrick
1876-1943
Pioneered mathematical methods in epidemiology
n number of individuals in the system
$S(t)$ number of susceptible individuals at time t
$X(t)$ number of infected individuals at time t
$s = S/n, \quad x = X/n$
S, X expectations of $S(t)$ and $X(t)$ if we run the same process many times
β contact rate per-individual

average rate of new infections is $X \beta \frac{S}{n}$

$$\frac{dX}{dt} = X \beta \frac{S}{n} \text{ or } \frac{dx}{dt} = \beta(1 - x)x$$

with solution $x(t) = \frac{x_0 e^{\beta t}}{1 - x_0 + x_0 e^{\beta t}}$

number of susceptible people got infected from one person

$s + x = 1$

New Cases of AIDS in The United States

[Graph showing logistic growth curve and data points for AIDS cases from 1980 to 1995]
SIR Assumption

Susceptible

↓

Infected

↓

Recovered = Removed or Dead
SIR Model

\(n \) \hspace{1cm} \text{number of individuals in the system}
\(S(t) \) \hspace{1cm} \text{number of susceptible individuals at time } t
\(X(t) \) \hspace{1cm} \text{number of infected individuals at time } t
\(R(t) \) \hspace{1cm} \text{number of recovered individuals at time } t
\(S, X, R \) \hspace{1cm} \text{expectations of } S(t), X(t), R(t)
\(s = S/n, \quad x = X/n, \quad r = R/n \)
\(\beta \) \hspace{1cm} \text{contact rate per-individual}
\(\gamma \) \hspace{1cm} \text{recovery rate per-individual}

\[\frac{ds}{dt} = -\beta sx \]
\[\frac{dx}{dt} = \beta sx - \gamma x \]
\[\frac{dr}{dt} = \gamma x \]

\(s + x + r = 1 \)

\[\frac{1}{s} \frac{ds}{dt} = -\frac{\beta}{\gamma} \frac{dr}{dt} \Rightarrow s = s_0 e^{-\frac{\beta r}{\gamma}} \]

\[x = 1 - s - r \Rightarrow \frac{dr}{dt} = \gamma \left(1 - r - s_0 e^{-\frac{\beta r}{\gamma}} \right) \]

\[r = 1 - s_0 e^{-\frac{\beta r}{\gamma}} \]

Remember the size of giant component in Poisson graph?
\(S = 1 - e^{-cs} \)

Introduction to Network Analysis
Figure 17.2: Time evolution of the SIR model. The three curves in this figure show the fractions of the population in the susceptible, infected, and recovered states as a function of time. The parameters are $\beta = 1$, $\gamma = 0.4$, $s_0 = 0.99$, $x_0 = 0.01$, and $r_0 = 0$.
SIR Model

The transition between epidemic and non-epidemic regimes happens when

\[\beta = \gamma \]

Basic reproduction number is the number of cases one case generates on average over the course of its infectious period

\[R_0 = \frac{\beta}{\gamma} \]

SIS Model

\[
\begin{align*}
\frac{ds}{dt} &= \gamma x - \beta sx \\
\frac{dx}{dt} &= \beta sx - \gamma x
\end{align*}
\]

\[x(t) = x_0 \frac{(\beta - \gamma) e^{(\beta-\gamma)t}}{\beta - \gamma + \beta x_0 e^{(\beta-\gamma)t}} \]
Networks (not full mixing), SIR

Transmission/infection rates have the same meaning but they will work via edges only

Probability (in full mixing) that the individual is still infected after time τ is

$$\lim_{\delta \tau \to 0} \frac{(1 - \gamma \delta \tau)^{\tau / \delta \tau}}{e^{-\gamma \tau}} = e^{-\gamma \tau}$$

In the same way the probability that the disease is transmitted

$$\phi = 1 - e^{-\beta \tau}$$

Assumption for networks: every infected individual remains infected for the same length of time, i.e., ϕ is constant.

Consider edge percolation with occupation probability ϕ, i.e., leave edges for disease transmission.
Figure 17.4: Bond percolation. In bond percolation, a fraction \(\phi \) of the edges in a network are filled in or "occupied" at random to create connected clusters of vertices. (a) For small occupation probability \(\phi \) the clusters are small. (b) Above the percolation threshold a large cluster forms, though there are usually still some small clusters as well. (c) When \(\phi = 1 \) all edges are occupied but the large cluster may still not fill the whole network: at \(\phi = 1 \) the largest cluster corresponds to the largest component of the network, which is often just a subset of the whole network.
Consider SIR on network with degree distribution p_k

- u - average prob that $i \in V$ is not connected to gc via one particular edge ij, i.e., either ij is unoccupied $(1 - \phi)$ or $j \not\in$ gc (u^k is j has k neighbors)

$$u = 1 - \phi + \phi \sum_{k=0}^{\infty} q_k u^k = 1 - \phi + \phi g_1(u)$$

- Thus, gc fraction is $S = 1 - \sum_{k=0}^{\infty} p_k u^k = 1 - g_0(u) \Rightarrow \phi_c = \frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}$ in node percolation it was $S = \phi(1 - g_0(u))$

$$\phi = 1 - e^{-\beta \tau} \Rightarrow \beta \tau = -\ln(1 - \phi_c) = \ln \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k^2 \rangle - 2\langle k \rangle}$$

Epidemic threshold if \geq then possible epidemic
Epidemic Thresholds in Real Networks

see paper by Chakrabarti, Wang, Wang, Leskovec, Faloutsos (will follow their notation)

Q: How to model viral propagation on arbitrary network? Which node is best to immunize? When is the outbreak?

Homogeneous model – everybody has equal contact to others (rate of infection depends on the density of population). **Nonhomogeneous model** – otherwise.

Kephart-White model: directed graph; \(i \rightarrow j \in E \) if \(i \) can infect \(j \); \(\beta \) is rate of infection (virus birth rate); \(\delta \) is virus death rate (node-curing).

\(\eta_t \) - size of infected population at time \(t \)

\[
\frac{d\eta_t}{dt} = \beta \langle k \rangle \eta_t \left(1 - \frac{\eta_t}{N} \right) - \delta \eta_t \quad \text{ (its steady state } \eta = N \left(1 - \frac{\delta}{\beta \langle k \rangle} \right) \text{)}
\]

Intuition: epidemic threshold \(\tau \) is a value such that a viral outbreak dies out quickly

\[
\beta / \delta < \tau, \quad \tau_{KW} = 1 / \langle k \rangle
\]

good approximation for homogeneous networks
Consider small time steps $\Delta t \to 0$; the system is a Markov chain with 2^N configurations of nodes S/I.

$p_{i,t}$ - probability i is infected at time t
$\zeta_{i,t}$ - probability that i will not receive infections from $N(i)$ in the next step

$$
\zeta_{i,t} = \prod_{j \in N(i)} (p_{j,t-1}(1 - \beta) + (1 - p_{j,t-1})) = \prod_{j \in N(i)} (1 - \beta p_{j,t-1})
$$

Non-linear dynamical system

$$
1 - p_{i,t} = (1 - p_{i,t-1}) \zeta_{i,t} + \delta p_{i,t-1} \zeta_{i,t}
$$

Oregon: This is a real network graph collected from the Oregon router views. 32,730 links/11,461 AS peers.

Fig. 2. Experiments on the real-world Oregon graph. The plots show the time evolution of infection in the Oregon network. Both simulations were performed with fixed β, but varying δ. In both cases, our model conforms more precisely to the simulation results than the MFA model.
Definition (NLDS Epidemic Threshold). The epidemic threshold τ for NLDS is a value such that

\[
\frac{\beta}{\delta} < \tau \quad \Rightarrow \quad \text{infection dies out over time}
\]
\[
\frac{\beta}{\delta} > \tau \quad \Rightarrow \quad \text{infection survives and becomes an epidemic}
\]

Theorem 1. In NLDS, the epidemic threshold τ for an undirected graph is

\[
\tau = \frac{1}{\lambda_{1,A}},
\]

where $\lambda_{1,A}$ is the largest eigenvalue of the adjacency matrix A. $s = \beta/\delta \cdot \lambda_{1,A}$ is a score of infection.

Theorem 2. When an epidemic is diminishing, i.e., $\frac{\beta}{\delta} < \frac{1}{\lambda_{1,A}}$, the probability of infection decays at least exponentially over time.
Enron database graph (email exchanges)
33K nodes, 361K edges

$s < 1$ – infection dies off

$s > 1$ - infection survives

$s = 0.10$
$s = 0.25$
$s = 0.50$
$s = 0.80$
$s = 1.20$
$s = 2.00$
$s = 4.00$
$s = 10.00$
$s = 1.00$

Number of infected nodes

Time-steps
Q: We have a budget of k nodes that can be immunized. How to choose these nodes?

Theorem 1 \(\rightarrow\) We need to decrease the maximal eigenvalue of the adjacency matrix.

Observation: Popular “targeted” immunization strategy (immunization of high-degree nodes) does not agree with maximum eigenvalue decrease! Example:

![Diagram](https://example.com/diagram.png)

Fig. 8. The “bar-bell” graph. Two cliques of the same size connected with a bridge.

Matlab immunization demo
Example of a Model: Response to Epidemics and Cyber Attacks

Open Science Grid: collaboration network example
Example of a Model: Response to Epidemics and Cyber Attacks

Open Science Grid: collaboration network example
Example of a Model: Response to Epidemics and Cyber Attacks

Open Science Grid: collaboration network example
Example of a Model: Response to Epidemics and Cyber Attacks
Goldberg, Leyffer, S “Optimal Response to Epidemics and Cyber Attacks in Networks”, 2011

site i closed/open $x_i \in \{0, 1\}$
infection probability at i ϕ_i

number of shared users w_{ij}
probability of $j \rightarrow i$ spread p_{ij}
connections between open sites, i.e., the utility of network

Model

maximize x

subject to

infection at node i is less than some constant $x_i \geq \prod_{j \in N(i)} (1 - p_{ij} \phi_j x_j) \leq t_i \quad \forall i \in V$

$x \in \{0, 1\}^n$