Random Graphs and Configuration Model

Degrees: 1, 1, 2, 2, 3, 3

1. Add n nodes
2. Add initial $d(i)$ stubs to each i
3. Connect stubs iteratively

Problems? Total degree is even; Can create self-loops, multi-edges
Configuration Model

Multi-edges: Probability of adding an edge between i and j with degrees k_i and k_j is

$$p_{ij} = \frac{k_i k_j}{2m - 1}$$

in the limit we can omit -1

Probability of second edge is $(k_i - 1)(k_j - 1)/2m$

Expected number of multiedges in conf model

$$\frac{1}{2(2m)^2} \sum_{ij} k_i k_j (k_i - 1)(k_j - 1) = \frac{1}{2\langle k \rangle^2 n^2} \sum_{i} k_i (k_i - 1) \sum_{j} k_j (k_j - 1) = \frac{1}{2} \left[\frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} \right]^2$$

Similar result for self-edges

$$\sum_i p_{ii} = \sum_i \frac{k_i (k_i - 1)}{4m} = \frac{\langle k^2 \rangle - \langle k \rangle}{2\langle k \rangle}$$

Conclusion? Expected number of multi-edges remains constant as network grows.

Expected number of common neighbors

$$n_{ij} = \sum_l \frac{k_i k_l}{2m} \frac{k_j (k_l - 1)}{2m} = \frac{k_i k_j}{2m} \frac{\sum_l k_l (k_l - 1)}{n \langle k \rangle} = p_{ij} \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle}$$

i is connected to l \uparrow j is connected to l given il
Random graphs with given expected degree

∀i ∈ V define parameter c_i. Then edge probability

\[p_{ij} = \begin{cases}
 \frac{c_i c_j}{2m} & i \neq j \\
 \frac{c_i^2}{4m} & i = j
\end{cases} , \text{ where } \sum_i c_i = 2m
\]

average number of edges in network

\[\sum_{i \leq j} p_{ij} = \sum_{i < j} \frac{c_i c_j}{2m} + \sum_i \frac{c_i^2}{4m} = m \]

average degree

\[\langle k_i \rangle = 2p_{ii} + \sum_{j \neq i} p_{ij} = \frac{c_i^2}{2m} + \sum_{j \neq i} \frac{c_i c_j}{2m} = \sum_j \frac{c_i c_j}{2m} = c_i \]
More properties of random model

Excess degree distribution is the probability distribution, for a vertex reached by following an edge, of the number of other edges attached to that vertex.

\[q_k = \frac{(k + 1)p_{k+1}}{\langle k \rangle} \]

Two academic collaboration networks, in which scientists are connected together by edges if they have coauthored scientific papers, and a snapshot of the structure of the Internet at the autonomous system level.

<table>
<thead>
<tr>
<th>Network</th>
<th>n</th>
<th>Average degree</th>
<th>Average neighbor degree</th>
<th>$\langle k^2 \rangle / \langle k \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologists</td>
<td>1520252</td>
<td>15.5</td>
<td>68.4</td>
<td>130.2</td>
</tr>
<tr>
<td>Mathematicians</td>
<td>253339</td>
<td>3.9</td>
<td>9.5</td>
<td>13.2</td>
</tr>
<tr>
<td>Internet</td>
<td>22963</td>
<td>4.2</td>
<td>224.3</td>
<td>261.5</td>
</tr>
</tbody>
</table>

According to these results a biologist’s collaborators have, on average, more than four times as many collaborators as they do themselves. On the Internet, a node’s neighbors have more than 50 times the average degree! Note that in each of the cases in the table the configuration model value of $\langle k^2 \rangle / \langle k \rangle$ overestimates the real average neighbor degree.

M. Newman “Networks”
More properties of random model

Excess degree distribution is the probability distribution, for a vertex reached by following an edge, of the number of other edges attached to that vertex.

\[
q_k = \frac{(k + 1)p_{k+1}}{\langle k \rangle}
\]

Clustering coefficient for configuration model

\[
C = \sum_{k_i,k_j=0}^{\infty} q_{k_i} q_{k_j} \frac{k_i k_j}{2m} = \frac{1}{2m} \left(\sum_{k=0}^{\infty} k q_k \right)^2 = \cdots = \frac{1}{n} \frac{\left(\langle k \rangle^2 - \langle k \rangle \right)^2}{\langle k \rangle^3}
\]
Generating Functions and Degree Distributions

For degree and excess degree distributions we define generating functions

\[g_0(z) = \sum_{k=0}^{\infty} p_k z^k \quad \text{and} \quad g_1(z) = \sum_{k=0}^{\infty} q_k z^k, \]

respectively.

They are not independent

\[g_1(z) = \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} (k + 1) p_{k+1} z^k = \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} k p_k z^{k-1} = \frac{1}{\langle k \rangle} \frac{dg_0}{dz} = \frac{g'_0(z)}{g'_0(1)} \]

we add zero term because of infinity

Example (Poisson): \(p_k = e^{-c} \frac{c^k}{k!} \quad \Rightarrow \quad g_0(z) = e^{c(z-1)} \) and \(g_1(z) = e^{c(z-1)} \)

Example (power-law): \(p_k = C k^{-\alpha} \quad \Rightarrow \quad g_0(z) = \frac{Li_{\alpha}(z)}{\zeta(\alpha)}. \) Thus,

\[g_1(z) = \frac{Li_{\alpha-1}(z)}{z Li_{\alpha-1}(1)} = \frac{Li_{\alpha-1}(z)}{z \zeta(\alpha - 1)} \]
Number of second neighbors of a vertex

Probability that \(i \) has exactly \(k \) second neighbors

\[
p_{k}^{(2)} = \sum_{m=0}^{\infty} p_{m} P^{(2)}(k|m)
\]

Probability of having \(k \) second neighbors given \(m \) first neighbors

Degree distribution

Prob excess degrees of \(m \) first neighbors take values \(j_1, j_2, \ldots, j_m \)

\[
P^{(2)}(k|m) = \sum_{j_1=0}^{\infty} \cdots \sum_{j_m=0}^{\infty} \delta \left(k, \sum_{r=1}^{m} j_r \right) \prod_{r=1}^{m} q_{j_r}
\]

all sets of values \(j_1, j_2, \ldots, j_m \) that sum to \(k \)

Generating function of \(p_{k}^{(2)} \)

\[
g^{(2)}(z) = \sum_{k=0}^{\infty} p_{k}^{(2)} z^k = \sum_{k=0}^{\infty} z^k \cdot \sum_{m=0}^{\infty} p_{m} \sum_{j_1=0}^{\infty} \cdots \sum_{j_m=0}^{\infty} \delta \left(k, \sum_{r=1}^{m} j_r \right) \prod_{r=1}^{m} q_{j_r} = \cdots = \]

\[
= \sum_{m=0}^{\infty} p_{m} \cdot \left(\sum_{j=0}^{\infty} q_{j} z^{j} \right)^m = g_0 \left(g_1(z) \right)
\]
Conclusion: Once we know generating functions of g_0 and g_1 the generating function of second neighbor distribution is straightforward to calculate. Moreover, this can be extended to

$$g^{(3)}(z) = \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} p_m^{(2)} P^{(3)}(k|m) z^k = \sum_{n=0}^{\infty} p_m^{(2)} (g_1(z))^m = g^{(2)}(g_1(z)) = g_0(g_1(g_1(z)))$$

$$\implies g^{(d)}(z) = g^{(d-1)}(g_1(z)) = g_0(g_1(\ldots g_1(z) \ldots))$$

Problem: Sometimes it is difficult to extract explicit probabilities for numbers of second neighbors and it is hard to evaluate n derivatives (in order to recover the probabilities).

Solution: calculate the average number of neighbors at distance d. At $z=1$ of the first derivative we can evaluate the average of a distribution (see Slide 16).

$$\frac{dg^{(2)}}{dz} = g'_0(g_1(z))g'_1(z) \bigg|_{z=1, g_1(1)=1} \implies c_2 = g'_0(1)g'_1(1) \implies g'_0(1) = \langle k \rangle$$

$$g'_1(k) = \sum_{k=0}^{\infty} kq_k$$

mean number of second neighbors

$$\frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} k(k+1)p_{k+1} = \frac{1}{\langle k \rangle} (\langle k^2 \rangle - \langle k \rangle)$$

Conclusion: $c_2 = \langle k^2 \rangle - \langle k \rangle$ and more general

$$c_d = \left(\frac{c_2}{c_1}\right)^{d-1} c_1 \implies$$

Condition of giant component’s existance in configuration model is $\langle k^2 \rangle - 2\langle k \rangle > 0$

[MR] A critical point for random graphs with given degree sequence
Let’s use theory for more practical results ...

Given a network with **power-law distribution** \(p_k = Ck^{-\alpha}, \ \alpha > 0, \ k > 0 \)

Reminder: \(C \) is calculated from normalization condition, i.e., \(C = 1/\zeta(\alpha) \)

\[
p_k = \begin{cases}
0 & k = 0 \\
\frac{k^{-\alpha}}{\zeta(\alpha)} & k > 0
\end{cases}
\]

This network will have a giant component iff \(\langle k^2 \rangle - 2\langle k \rangle > 0 \)

\[
\langle k \rangle = \sum_{k=0}^{\infty} kp_k = \frac{1}{\zeta(\alpha)} \sum_{k=1}^{\infty} k^{-\alpha+1} = \frac{\zeta(\alpha - 1)}{\zeta(\alpha)}
\]

\[
\langle k^2 \rangle = \sum_{k=0}^{\infty} k^2 p_k = \frac{1}{\zeta(\alpha)} \sum_{k=1}^{\infty} k^{-\alpha+2} = \frac{\zeta(\alpha - 2)}{\zeta(\alpha)}
\]

\[\implies \zeta(\alpha - 2) > 2\zeta(\alpha - 1)\]
Figure 13.8: Graphical solution of Eq. (13.138). The configuration model with a pure power-law degree distribution (Eq. (13.133)) has a giant component if $\zeta(\alpha - 2) > 2\zeta(\alpha - 1)$. This happens for values of α below the crossing point of the two curves.
Models of Network Formation

Happy families are all alike, every unhappy family is unhappy in its own way.

Leo Tolstoy

Fundamental theoretical and practical questions

- What are the fundamental processes that form a network?
- How to predict its future structure?
- Why should a network have property X?
- Will my algorithm/heuristic work on networks created by similar processes?

Is it similar to the original network?
Rich-get-richer effect

Herbert Simon
1916-2001

Analyzed the power laws in economic data, suggested explanation of wealth distribution: return of investment is proportional to the amount invested, i.e., wealthy people will get more and more.

Simon (1976). “On a class of skew distribution functions"

Derek Price
1922-1983

Studied information science; in particular, citation networks; his main assumption was about newly appearing papers that cite old papers with probability proportional to the number of citations those old papers have. The model is similar to Simon’s model.

Price (1976). "A general theory of bibliometric and other cumulative advantage processes"
Price's model

\[c \text{ on the average} \]