Clustering Coefficient and Transitivity

A triangle is a complete subgraph of G with 3 vertices.
$\lambda(G) =$ number of triangles in G; $\lambda(v)$ is defined accordingly; $\lambda(G) = \frac{1}{3} \sum_v \lambda(v)$

A triple is a subgraph of G with 3 nodes and 2 edges; A triple is a *triple at v* if v incident with both edges.

$$
\tau(v) = \binom{d(v)}{2} = \frac{d^2(v) - d(v)}{2}, \quad \tau(G) = \sum_v \tau(v)
$$

We define *clustering coefficient* as $c(v) = \lambda(v)/\tau(v)$.

Given $V' = \{v \in V | d(v) \geq 2\}$ we define cc of G as

$$
C(G) = \frac{1}{V'} \sum_{v \in V'} c(v)
$$

Transitivity of G is defined as

$$
T(G) = \frac{3\lambda(G')}{\tau(G)}
$$
Fig. 11.2. On the left: Graph with clustering coefficients: $c(a) = c(c) = 2/3$, $c(b) = c(d) = 1$, $C(G) = \frac{1}{4}(2 + 4/3) \approx 0.83$ and transitivity $T(G) = 3 \cdot 2/8 = 0.75$. On the right: family of graphs where $T(G) \to 0$, $C(G) \to 1$ for $n \to \infty$.

[BE] “Network Analysis”
Clustering Coefficient and Transitivity

Transitivity by Bollobas and Riordan

\[T(G) = \frac{\sum_{v \in V'} \tau(v)c(v)}{\sum_{v \in V'} \tau(v)} \]

- If all nodes have the same degree then \(C(G) = T(G) \)
- If all clustering coefficients are equal then \(C(G) = T(G) \)
Computing Clustering Coefficient

Computing cc = computing triples (trivial, how?) + computing triangles
Computing triangles = $O(nd_{max}^2)$ – trivial, $O(n^{2.376})$ – mat-mat multiplication

Approximation for very large networks

$x_i \in [0, M]$ is a random var; k is number of samples; ϵ is error bound

Hoeffding inequality

$$\Pr \left(\left| \frac{1}{k} \sum_{i=1}^{k} x_i - \mathbb{E} \left[\frac{1}{k} \sum_{i=1}^{k} x_i \right] \right| \geq \epsilon \right) \leq e^{-\frac{2k\epsilon^2}{M^2}}$$

Lemma: If we consider the constant error bound then there exist algorithms that approximate the clustering coefficients for each node $c(v)$ and the transitivity $T(G')$ in time $O(n)$. The clustering coefficient $C(G')$ can be approximated in time in $O(1)$.

Homework: [SW] “Approximating clustering-coefficient and transitivity” (submit review by 3/6)
Spectral Methods (aka Algebraic Graph Theory, see Chapter 14 in [BE] “Network analysis”)

Three main objects of interest: adjacency matrix, Laplacian, and normalized Laplacian
What their spectrum (all eigenvalues, including algebraic multiplicity) can tell about network statistics, existence of subgraphs, classification, etc.?

Let \(M \in \mathbb{C}^{n \times n} \). A non-zero vector \(x \in \mathbb{C}^n \) is an eigenvector of \(M \) with corresponding eigenvalue \(\lambda \in \mathbb{C} \) if

\[
Mx = \lambda x
\]

The solution exists iff \(\text{rank}(M - \lambda I) < n \) iff \(\det(M - \lambda I) = 0 \), i.e., the eigenvalues are roots of \(\det(M - \lambda I) = 0 \).

If \(Q \) is non-singular then \(M \) and \(Q^{-1}MQ \) have the same eigenvalues.

- If \(M \in \mathbb{R}^{n \times n} \) and \(M = M^T \) then \(\exists \) non-singular \(Q \) s.t. \(Q^{-1} = Q^T \) and \(M' = Q^{-1}MQ \) has diagonal form. Eigenvectors of \(M' \) are \(e_i \) and

\[
\det(M - \lambda I) = \det(M' - \lambda I) = \prod_{i} (\lambda_i - \lambda)
\]

One can infer \(\text{tr}(M) = \sum_{i=1}^{n} \lambda_i \) (check at home).

- If \(v_i = Qe_i \) then \(Mv_i = \lambda_i v_i \) and \(v_i^T v_j = e_i^T e_j \).
Theorem 1. Let $M \in \mathbb{R}^{n \times n}$ and $M = M^T$, then

1. M has real eigenvalues $\lambda_1 \leq ... \leq \lambda_n$ and n orthonormal eigenvectors

2. multiplicity of λ_i as an eigenvalue = multiplicity of λ_i as a root of the characteristic polynomial $\det(M - \lambda I) = $ cardinality of a maximum linearly independent set of eigenvectors corresponding to λ_i

3. $\exists Q$ with $Q^T = Q^{-1}$ such that $QMQ^{-1} = \text{diag}(\lambda_1, ..., \lambda_n)$

4. $\det(M) = \prod_i \lambda_i$ and $\text{tr}(M) = \sum_i \lambda_i$

Theorem 2. Let G be a graph, and A its adj matrix with ordered eigenvalues λ_i, and Δ is a max degree of G then

1. $\lambda_n \leq \Delta$

2. $G = G_1 \cup G_2 \Rightarrow \text{spec}(G) = \text{spec}(G_1) \cup \text{spec}(G_2)$

3. G is bipartite \Rightarrow (if $\lambda \in \text{spec}(G')$ then $-\lambda \in \text{spec}(G')$)

4. G is simple cycle \Rightarrow $\text{spec}(G) = \{2 \cos(\frac{2\pi k}{n}) | k \in \{1, ..., n\}\}$

5. $G = K_{n_1, n_2} \Rightarrow \lambda_1 = -\sqrt{n_1 n_2}, \lambda_2 = ... = \lambda_{n-1} = 0, \text{ and } \lambda_n = \sqrt{n_1 n_2}$

6. $G = K_{n_1} \Rightarrow \lambda_1 = ... = \lambda_{n-1}, \lambda_n = n - 1$
Theorem 3.

1. $\sum_{i=1}^{n} \lambda_i = \text{number of loops in } G$
2. $\sum_{i=1}^{n} \lambda_i^2 = 2 \times \text{number of edges in } G$
3. $\sum_{i=1}^{n} \lambda_i^3 = 6 \times \text{number of triangles in } G$

Homework: Prove any 2 out of 3 in Theorem 3 (submit by 3/6/2014)

Laplacian matrix $L = D - A$

Incidence matrix $B = (b_{i,e}) = \begin{cases} 1 & \text{if } e \text{ is the head of } i \\ -1 & \text{if } e \text{ is the tail of } i \\ 0 & \text{otherwise} \end{cases}$

For any $x \in \mathbb{C}^n$, $x^T L x = x^T B B^T x = \sum_{ij \in E} (x_i - x_j)^2$

A graph G consists of k connected components if and only if $\lambda_1(L) = \ldots = \lambda_k(L) = 0$ and $\lambda_{k+1}(L) > 0$.

Trees and Laplacian: for every $i \in \{1, \ldots, n\}$ the number of spanning trees in G is equal to $|\det(L_i)|$, where L_i is obtained from the Laplacian L by deleting row i and column i. Moreover, the number of spanning trees is equal to $\frac{1}{n} \prod_{i \geq 2} \lambda_i(L)$.

Introduction to Network Analysis