IMPLICIT CROWDS: OPTIMIZATION INTEGRATOR FOR ROBUST CROWD SIMULATION

Ioannis Karamouzas1, Nick Sohre2, Rahul Narain2, Stephen J. Guy2

1Clemson University
2University of Minnesota
Given desired velocities, how should agents navigate around each other?
Given desired velocities, how should agents navigate around each other?
Adding Realism

- Probabilistic approaches [Wolinski et al. 2016]
-
LOCAL COLLISION AVOIDANCE

Force-based methods [Reynolds 1987, 1999; Helbing et al. 2000; Pelechano et al. 2007, …]

- Require very small time steps for stability

Velocity-based methods [van den Berg et al. 2008, 2011; Pettré et al. 2011, …]

- Overly conservative behavior

![Diagram](image1)

\[\Delta t = 0.1 \text{s} \]
We seek a generic technique for multi-agent navigation that

- guarantees collision-free motion
- is robust to variations in scenario, density, time step
- exhibits high-fidelity behavior
- can update at footstep rates (0.3-0.5 s)
OUR CONTRIBUTIONS

1. General form of collision avoidance behaviors

\[
\frac{dv}{dt} = - \frac{\partial R(x, v)}{\partial v}
\]

supporting optimization-based implicit integration

2. Application to state-of-the-art power law model

\[R(x, v) \propto \tau(x, v)^{-p} \]

for practical crowd simulations
I. OPTIMIZATION INTEGRATOR FOR CROWDS
IMPLICIT INTEGRATION

\[
\frac{d}{dt} \begin{bmatrix} X \\ v \end{bmatrix} = \begin{bmatrix} v \\ M^{-1} f(x, v) \end{bmatrix}
\]

• Unconditionally stable, but

[Baraff and Witkin, 1998]
IMPLICIT INTEGRATION

\[
\frac{d}{dt} \begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} v \\ M^{-1} f(x, v) \end{bmatrix} \iff
\]

\[
x^{n+1} - x^n = v^{n+1} \Delta t, \\
M(v^{n+1} - v^n) = f^{n+1} \Delta t
\]

• Unconditionally stable, but
• Need to solve a non linear system
• Slow (but we can use large time steps)

[Kaufman et al. 2014]
As long as forces are conservative:

\[\mathbf{f}(\mathbf{x}) = -\frac{dU(\mathbf{x})}{d\mathbf{x}}, \]

we can express backward Euler in optimization form [Martin et al. 2011; Gast et al. 2015]:

\[\mathbf{x}^{n+1} = \arg \min_{\mathbf{x}} \left(\frac{1}{2\Delta t^2} \| \mathbf{x} - \tilde{\mathbf{x}} \|_\mathbf{M}^2 + U(\mathbf{x}) \right) \]
As long as forces are *conservative*:

$$ f(x) = -\frac{dU(x)}{dx}, $$

we can express backward Euler in optimization form [Martin et al. 2011; Gast et al. 2015]:

$$ x^{n+1} = \arg \min_x \left(\frac{1}{2\Delta t^2} \| x - \tilde{x} \|_M^2 + U(x) \right) $$

Interpretation: tradeoff between *maintaining velocity* and *reducing potential energy*
$x^{n+1} = \arg \min_x \left(\frac{1}{2\Delta t^2} \| x - \tilde{x} \|^2_M + U(x) \right)$

Why this is good:

- Simple and fast algorithms (e.g. gradient descent, Gauss-Seidel) can be given guarantees
- Highly nonlinear forces can be used without linearization
- Lots of recent advances in optimization for data mining, machine learning, image processing, …

[Fratarcangeli et al. 2016]
Conservative potentials $U(x)$ can only model \textit{position-dependent forces}
Conservative potentials $U(x)$ can only model position-dependent forces

- Humans anticipate
 - People anticipate future trajectories of others [Cutting et al. 2005, Olivier et al. 2012; Karamouzas et al. 2014]
 - Brains have special neurons for estimating collisions [Gabbiani 2002]

Crowd forces depend both on positions and velocities!
Hypothesis: Multi-agent interactions can be expressed as

$$f(x, v) = -\frac{\partial R(x, v)}{\partial v}$$

where R is an anticipatory potential that drives agents away from high-cost velocities

(This is analogous to dissipation potentials [Goldstein 1980] in classical mechanics)
Optimization Integrator for Non-Conservative Forces

Anticipatory forces

\[\mathbf{v}^{n+1} = \arg \min_{\mathbf{v}} \frac{1}{2} \| \mathbf{v} - \tilde{\mathbf{v}} \|_{M}^{2} + R(\mathbf{x} + \mathbf{v} \Delta t, \mathbf{v}) \Delta t \]
Optimization Integrator for Non-Conservative Forces

Anticipatory + conservative forces

\[v^{n+1} = \arg \min_v \frac{1}{2} \|v - \hat{v}\|^2_\text{M} + U(x + v\Delta t) + R(x + v\Delta t, v)\Delta t \]

- First-order accurate
- \(U(\cdot) + R(\cdot)\Delta t \) is analogous to the “effective interaction potential” in symplectic integrators [Kane et al. 2000; Kharevych et al. 2006]
- Simple interpretation: tradeoff between maintaining velocity, reducing \(U \), and reducing \(R \)
SOME EXISTING MODELS

Alignment behavior in boids [Reynolds 1987]:

\[f_{ij} = -w(\|x_{ij}\|)v_{ij} \iff R_{ij} = w(\|x_{ij}\|)\|v_{ij}\|^2 \]
SOME EXISTING MODELS

Alignment behavior in boids [Reynolds 1987]:
\[f_{ij} = -w(\|x_{ij}\|)v_{ij} \Leftrightarrow R_{ij} = w(\|x_{ij}\|)\|v_{ij}\|^2 \]

Velocity obstacles [Fiorini and Shiller 1998]:
\[v_{ij} \notin VO(x_{ij}) \Leftrightarrow R_{ij} = \begin{cases} \infty & \text{if } v_{ij} \in VO(x_{ij}) \\ 0 & \text{otherwise} \end{cases} \]
Alignment behavior in boids [Reynolds 1987]:
\[f_{ij} = -w(||x_{ij}||)v_{ij} \iff R_{ij} = w(||x_{ij}||)||v_{ij}||^2 \]

Velocity obstacles [Fiorini and Shiller 1998]:
\[v_{ij} \not\in VO(x_{ij}) \iff R_{ij} = \begin{cases} \infty & \text{if } v_{ij} \in VO(x_{ij}) \\ 0 & \text{otherwise} \end{cases} \]

What is \(R_{ij} \) for humans?
Alignment behavior in boids [Reynolds 1987]:
\[\mathbf{f}_{ij} = -w(\|\mathbf{x}_{ij}\|)\mathbf{v}_{ij} \iff R_{ij} = w(\|\mathbf{x}_{ij}\|)\|\mathbf{v}_{ij}\|^2 \]

Velocity obstacles [Fiorini and Shiller 1998]:
\[\mathbf{v}_{ij} \notin VO(\mathbf{x}_{ij}) \iff R_{ij} = \begin{cases} \infty & \text{if } \mathbf{v}_{ij} \in VO(\mathbf{x}_{ij}) \\ 0 & \text{otherwise} \end{cases} \]

What is \(R_{ij} \) for humans?
II. IMPLICIT CROWDS USING THE POWER-LAW MODEL
For each pair of agents:
- Compute time to collision $\tau(x, v)$

Collisions occur when

$$\|x_{ij} + v_{ij}\tau\| = r_i + r_j$$

[Karamouzas et al. 2014]
For each pair of agents:

- Compute time to collision $\tau(x, v)$

Collisions occurs when

$$
\|x_{ij} + v_{ij} \tau\| = r_i + r_j
$$
For each pair of agents:

- Compute time to collision $\tau(x, v)$
- Compute potential $R(x, v) \propto \tau(x, v)^{-p}$

Collisions occur when

$$\left\|x_{ij} + v_{ij}\tau\right\| = r_i + r_j$$

[Karamouzas et al. 2014]
For each pair of agents:

- Compute time to collision $\tau(x, v)$
- Compute potential $R(x, v) \propto \tau(x, v)^{-p}$

Collisions occur when

$$\|x_{ij} + v_{ij}\tau\| = r_i + r_j$$

[Karamouzas et al. 2014]
Problem: Apply power law potential to optimization-based backward Euler

Easy? Not quite…

- R is discontinuous at boundary of collision cone
- R becomes infinitely steep as agents graze past

Both phenomena cause numerical solvers to “get stuck”
Problem: Apply power law potential to optimization-based backward Euler

Easy? Not quite…

• R is discontinuous at boundary of collision cone
• R becomes infinitely steep as agents graze past

Both phenomena cause numerical solvers to “get stuck”
A CONTINUOUS TTC POTENTIAL

Discontinuity due to time to collision (finite if collision predicted, infinite if not)
A CONTINUOUS TTC POTENTIAL

Discontinuity due to time to collision (finite if collision predicted, infinite if not)
A CONTINUOUS TTC POTENTIAL

Discontinuity due to time to collision (finite if collision predicted, infinite if not)
Solution:
Let’s work with $\frac{1}{\tau}$ (or, “imminence” of collision)

- Replace it with a continuous approximation, e.g., by linear extrapolation
Solution:

Let’s work with $\frac{1}{\tau}$ (or, “imminence” of collision)

- Replace it with a continuous approximation, e.g., by linear extrapolation
- R becomes C^{p-1}-smooth
Grazing trajectories make R badly behaved.
Grazing trajectories make R badly behaved

- Add some distance-based repulsion $U_{ij} \propto \frac{1}{\|x_{ij}\| - r_{ij}}$
- Continuous collision detection: replace distance $\|x_{ij}\|$ with *minimum* distance over the time step

Alternative approach to repulsion: add uncertainty to time-to-collision computation [Forootaninia et al. 2017]
III. ANALYSIS AND RESULTS
Implicit integration + continuous PowerLaw potential

• Guaranteed collision-free motion
• Smooth (C²-continuous) trajectories
Implicit integration + continuous PowerLaw potential

- Guaranteed collision-free motion
- Smooth (C^2-continuous) trajectories

Collision-free proof

- \(\mathbf{v}^{n+1} \) minimizes
 \[
 \frac{1}{2} \left\| \mathbf{v}^{n+1} - \mathbf{\tilde{v}} \right\|_M^2 + U(\mathbf{x}^{n+1}) + R(\mathbf{x}^{n+1}, \mathbf{v}^{n+1}) \Delta t
 \]

- \(R \) is infinite for a colliding state. \(U \) is infinite for a tunneling step. So these cannot be minima.
Comparisons to
- ORCA [van den Berg et al. 2011] (representative velocity-based approach)
- PowerLaw [Karamouzas et al. 2014] (non-continuous TTC + forward Euler)

<table>
<thead>
<tr>
<th>Scenario</th>
<th># Agents</th>
<th># Obstacles</th>
<th>Roadmap</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hallway</td>
<td>300</td>
<td>2</td>
<td>no</td>
<td>medium</td>
</tr>
<tr>
<td>Crossing</td>
<td>400</td>
<td>0</td>
<td>no</td>
<td>high</td>
</tr>
<tr>
<td>Random</td>
<td>500</td>
<td>0</td>
<td>no</td>
<td>low</td>
</tr>
<tr>
<td>Evacuation</td>
<td>1200</td>
<td>178</td>
<td>yes</td>
<td>very high</td>
</tr>
<tr>
<td>Blocks</td>
<td>2000</td>
<td>112</td>
<td>yes</td>
<td>low</td>
</tr>
</tbody>
</table>
COllision-Free Motion

- Comparisons to
 - ORCA [van den Berg et al. 2011] (representative velocity-based approach)
 - PowerLaw [Karamouzas et al. 2014] (non-continuous TTC + forward Euler)

<table>
<thead>
<tr>
<th>Scenario</th>
<th># Agents</th>
<th># Obstacles</th>
<th>Roadmap</th>
<th>Density</th>
<th>Maximum collision-free (\Delta t) [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hallway</td>
<td>300</td>
<td>2</td>
<td>no</td>
<td>medium</td>
<td>PowerLaw: 40 ORCA: 100 Implicit</td>
</tr>
<tr>
<td>Crossing</td>
<td>400</td>
<td>0</td>
<td>no</td>
<td>high</td>
<td>PowerLaw: 20 ORCA: 35 Implicit</td>
</tr>
<tr>
<td>Random</td>
<td>500</td>
<td>0</td>
<td>no</td>
<td>low</td>
<td>PowerLaw: 30 ORCA: 140 Implicit</td>
</tr>
<tr>
<td>Evacuation</td>
<td>1200</td>
<td>178</td>
<td>yes</td>
<td>very high</td>
<td>PowerLaw: < 5 ORCA: 25 Implicit</td>
</tr>
<tr>
<td>Blocks</td>
<td>2000</td>
<td>112</td>
<td>yes</td>
<td>low</td>
<td>PowerLaw: 30 ORCA: 90 Implicit</td>
</tr>
</tbody>
</table>
COLLISION-FREE MOTION

- Comparisons to
 - ORCA [van den Berg et al. 2011] (representative velocity-based approach)
 - PowerLaw [Karamouzas et al. 2014] (non-continuous TTC + forward Euler)

<table>
<thead>
<tr>
<th></th>
<th># Agents</th>
<th># Obstacles</th>
<th>Roadmap</th>
<th>Density</th>
<th>Maximum collision-free Δt [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PowerLaw</td>
</tr>
<tr>
<td>Hallway</td>
<td>300</td>
<td>2</td>
<td>no</td>
<td>medium</td>
<td>40</td>
</tr>
<tr>
<td>Crossing</td>
<td>400</td>
<td>0</td>
<td>no</td>
<td>high</td>
<td>20</td>
</tr>
<tr>
<td>Random</td>
<td>500</td>
<td>0</td>
<td>no</td>
<td>low</td>
<td>30</td>
</tr>
<tr>
<td>Evacuation</td>
<td>1200</td>
<td>178</td>
<td>yes</td>
<td>very high</td>
<td><5</td>
</tr>
<tr>
<td>Blocks</td>
<td>2000</td>
<td>112</td>
<td>yes</td>
<td>low</td>
<td>30</td>
</tr>
</tbody>
</table>
Comparison to human crowds [Charalambous et al. 2014]
TIME STEP STABILITY

Implicit
\[\Delta t = 0.4s \]

(1.5x playback speed)
TIME STEP STABILITY

Motion doesn’t change significantly with time step
PERFORMANCE

Cost is linear in number of agents, increases slowly with time step size
(Still, 2x-10x slower than ORCA or PowerLaw on a 6-core Intel Xeon E5-1650)

Future work: Improve performance via local-global alternating minimization techniques

[Liu et al. 2017]
[Narain et al. 2016]
LIMITATIONS AND FUTURE WORK

• Can other recent crowd models be formulated via interaction energies [Wolinski et al. 2016, Dutra et al. 2017; …]?
• Incorporating asymmetrical interactions, e.g., leader-following behavior
• What is the Δt threshold where quality is maintained?

![Images showing crowd dynamics with different time intervals: $\Delta t=0.1s$, $\Delta t=1s$, $\Delta t=4s$]
LIMITATIONS AND FUTURE WORK

- Can other recent crowd models be formulated via interaction energies [Wolinski et al. 2016, Dutra et al. 2017; …]?
- Incorporating asymmetrical interactions, e.g., leader-following behavior
- What is the Δt threshold where quality is maintained?

| Δt | Simulated Crowd
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1s</td>
<td></td>
</tr>
<tr>
<td>1s</td>
<td></td>
</tr>
<tr>
<td>4s</td>
<td></td>
</tr>
</tbody>
</table>
FUTURE WORK

- Applications to LOD systems and footstep-based animation engines
- Applications to nonlinear dissipation forces in physics-based animation

[Zhu et al. 2015]

[Xu and Barbic 2017]
THANK YOU

https://www.cs.clemson.edu/~ioannis/implicit-crowds/