Conversions Among FAs and REs

We describe algorithms that convert among NFAs, DFAs, and REs.
Surprisingly perhaps, nondeterminism does not add to the power of a finite automaton:

Kleene’s Theorem. The following are equivalent for a language L:

1. There is a DFA for L.
2. There is an NFA for L.
3. There is an RE for L.

This theorem is proved in three conversion algorithms:

$$(3) \implies (2) \implies (1) \implies (3).$$
Conversion from RE to NFA: Recursion

Conversion from RE to NFA uses a recursive construction.

Converting from RE to NFA.
0) If RE empty string, then output simple NFA.
1) If RE single symbol, then output simple NFA.
2) If RE has form $A + B$, then combine NFAs for A and B.
3) If RE has form AB, then combine NFAs for A and B.
4) If RE has form A^*, then extend NFA for A.
An NFA for a single symbol c consists of two states:

$$q_0 \xrightarrow{c} q_1$$
The Union of Two NFAs

Given NFA M_A for A and M_B for B, here is one for $A+B$. Add new start state with ε-transitions to the original start states of both M_A and M_B.

The machine guesses which of A or B the input is in.

Goddard 3b: 5
Here is one for AB. Start with NFAs M_A and M_B. First, put ε-transitions from accept states of M_A to start state of M_B. Then make original accept states of M_A reject.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{concatenation_nfas}
\end{figure}
The Star of an NFA

Here is one for A^*. The idea is to allow the machine to cycle from the accept state back to the start state; but we have to be careful.

One way to go: build a new start state, which is the only accept state; then put ε-transition from it to old start state, and from old accept states to it; and change every old accept state to reject.
Consider $0 + 10^*$

Build NFAs for the 0, the 1 and the 0^*, then combine the latter two, and finally merge.

Note that resulting NFA can easily be simplified.
From NFA to DFA: Subset Construction

Converting from NFA to DFA uses the *subset construction*.

The idea is that to efficiently simulate an NFA on a string, one should at each step keep track of the *set of states* the NFA could be in. Note that one can determine the set at one step from the set at the previous step.
Example: Simulating an NFA

Consider \textit{10100} as input to this NFA:

\[
\begin{align*}
\{A\} & \rightarrow \{A, C\} \rightarrow \{A, B\} \rightarrow \{A, C\} \rightarrow \{A, B\} \rightarrow \{A, B, D\}
\end{align*}
\]

So accepts \textit{10100} because it can be in accept state after reading the final symbol.
Conversion from NFA to DFA

From NFA (without ε-transitions) to DFA.

0. Each state given by set of states from original.
1. Start state is labeled \(\{q_0\} \) where \(q_0 \) was original start state.
2. While (some state of DFA is missing a transition) do:
 compute transition by combining the possibilities for each symbol in the set.
3. Make into accept state any set that contains an original accept state.
Suppose state of DFA was given by the set \{A, B, D\}. On 1, the NFA if in state A can go to states A or C, if in state B dies, and if in state D stays in state D. Thus on a 1 the DFA goes to \{A, C, D\}. This is an accept state of DFA because it has D.
And the DFA is
Need Closure for ε-Transitions

ε-transitions add a bit more work:

Conversion from NFA (with ε-transitions) to DFA. As before, except:

1) The start state becomes the old start state and every state reachable from it by ε-transitions.
2) When one calculates the states reachable, one includes all states reachable by ε-transitions after the destination state.
Recall the NFA that accepts all binary strings where the last symbol is 0 or which contain only 1’s:

We apply the subset construction...
And the DFA is
Convert the following NFA to a DFA using the subset construction:
Solution to Practice
Finally, we show how to convert from FA to RE. One approach is to use a *generalized FA* (GFA): each transition is given by an RE.

We build a series of GFAs. At each step, one state (other than start or accept) is removed and replaced by transitions that have the same effect.
Removing a State

Say there is transition \(a \) from state 1 to state 2, transition \(b \) from state 2 to state 2 and transition \(c \) from state 2 to state 3.

One can achieve the same effect by a transition \(ab^*c \) from state 1 to state 3.

One must consider all transitions in and out of state 2 simultaneously.
Converting from FA to RE: Summary

We assume unique accept state, no transition out of accept state, no transition into start state.

Conversion from FA to RE.

0. Convert to FA of right form.

1. While (more than two states) do
 - remove one state and replace by appropriate transitions.

2. Read RE off the remaining transition.
Here is the earlier NFA for $a^* + (ab)^*$ adjusted to have a unique accept state.
First Step

If we eliminate state X we get

![Diagram showing state transitions]

- From state Y, with input a, the transition to state Z is labeled with $aa^* + \varepsilon$.
- From state Z, with input b, the transition back to state Y is labeled with ε.
- The transition from Y to itself, with input a, is labeled with ε.

Goddard 3b: 23
And Then

If we eliminate state Z we get

\[aa^* + \varepsilon \]

If we eliminate state Y we get

\[aa^* + \varepsilon + a(ba)^*b \]
Convert that following DFA (from earlier) to an RE using the GFA method.

![DFA Diagram]

Practice
Solution to Practice

\[(0 + 11 \times 0)(0 + 11 \times 0)^* + \varepsilon + 11^*\]
Kleene’s theorem says that the following are equivalent for a language: there is an FA for it; there is an NFA for it; and there is an RE for it. The proof provides an algorithm to convert from one form to another; the conversion from NFA to DFA is the subset construction.