Proving NP-Completeness

We show problems are NP-complete by reducing from known NP-complete problems.
Proving NP-Completeness by Reduction

To prove a problem is NP-complete, use the earlier observation:

If S is NP-complete, $T \in \mathsf{NP}$ and $S \leq_p T$, then T is NP-complete.
Recall 3SAT:

Input: ϕ a boolean formula in 3CNF
Question: is there a satisfying assignment?

The language 3SAT is a restriction of SAT, and so 3SAT $\in \mathcal{NP}$.

Proof that 3SAT is \mathcal{NP}-complete
Reducing 3SAT to SAT

We reduce SAT to 3SAT. The task is to describe a polynomial-time algorithm for:

input: a boolean formula ϕ in CNF
output: a boolean formula ψ_ϕ in 3CNF such that ϕ is satisfiable exactly when ψ_ϕ is.
Substituting Clauses

We replace each clause C of ϕ by family D_C of clauses that preserves satisfiability.

For example, say $C = a \lor b \lor c \lor d \lor e$. One can simulate this by

$$D_C = (a \lor b \lor x) \land (\bar{x} \lor c \lor y) \land (\bar{y} \lor d \lor e)$$

where x and y are new variables. Need to verify:

1) If C is FALSE, then D_C is FALSE; and
2) If C is TRUE, then one can make D_C TRUE.

Clauses of other sizes are handled similarly.
So this yields ψ_ϕ in 3CNF. If ϕ is satisfiable, then there is assignment where each clause C is TRUE; this can be extended to make each D_C TRUE. Further, if assignment evaluates ϕ to FALSE, then some clause say C' must be FALSE and thus the corresponding family $D_{C'}$ in ψ_ϕ is FALSE.

The last thing to check is that the conversion process can be encoded as a polynomial-time algorithm. Thus, we have shown that SAT reduces to 3SAT, and so 3SAT is \mathcal{NP}-complete.
Proof that DOMINATION is NP-complete

Recall that a dominating set D is such that every other node is adjacent to a node in D; and that the DOMINATION problem is:

Input: graph G and integer k
Question: is there dominating set of at most k nodes?

We reduce 3SAT to DOMINATION. That is, we describe a procedure that takes boolean formula ϕ, and produces graph G_ϕ and integer k_ϕ such that ϕ is satisfiable exactly when there is a dominating set of G_ϕ of k_ϕ nodes.
Suppose ϕ in 3CNF has c clauses and m variables. For each clause, create a node. For each variable v, create a triangle with one node labeled v and one labeled \overline{v}. Then for each clause, join the clause-node to the three nodes corresponding to its literals. The result is graph G_ϕ.

For example, the graph for $(x \lor y \lor z) \land (\overline{x} \lor y \lor \overline{z})$:

![Graph Diagram](image-url)
Set $k_\phi = m$ (the number of vars). Claim: the mapping ϕ to $\langle G_\phi, k_\phi \rangle$ is the desired reduction.

If ϕ has satisfying assignment, then let D be the m nodes corresponding to TRUE literals in the assignment. Then each triangle is dominated, as is each clause-node. So D is dominating set.

Conversely, suppose G_ϕ has dominating set D of size m. Then D must be one node from each triangle, and every clause must be connected to one literal in D. So setting all the literals corresponding to nodes in D to TRUE is satisfying.
That is, we have shown that 3SAT reduces to DOMINATION, and so DOMINATION is \(\mathcal{NP} \)-complete.
Gadgets

The above reduction illustrates a common pattern. To reduce from 3SAT, create a “gadget” for each variable and a “gadget” for each clause, and connect them up somehow.
Proof that \textsc{subset-sum} is \mathcal{NP}-complete

Recall that input to Subset sum problem is set $A = \{a_1, a_2, \ldots, a_m\}$ of integers and target t. The question is whether there is $A' \subseteq A$ such that elements in A' sum to t.

We prove this problem is \mathcal{NP}-complete. This is again a reduction from 3SAT. The previous example suggests the approach: define numbers x_i and \bar{x}_i and a target t such that one can take only one of x_i and \bar{x}_i, and then some constraint is to be satisfied.
Suppose that one has \textit{vectors} instead of numbers. Two vectors (of same length) can be added component-wise. The question now is whether there is subset whose sum equals a specified vector.

Suppose input ϕ has c clauses and m variables. The vectors will have length $c + m$. For each vector, the first m positions will specify which variable by a 1 in the appropriate position. The second part records the clauses each literal is in.
Example Vectors

For example, if ϕ is

$$(x_2 \lor x_3 \lor \bar{x}_4) \land (x_1 \lor \bar{x}_3 \lor x_4) \land (x_1 \lor \bar{x}_2 \lor x_4)$$

then vectors corresponding to the variables are

$x_1 = (1, 0, 0, 0; 0, 1, 1)$ and $\bar{x}_1 = (1, 0, 0, 0; 0, 0, 0)$

$x_2 = (0, 1, 0, 0; 1, 0, 0)$ and $\bar{x}_2 = (0, 1, 0, 0; 0, 0, 1)$

$x_3 = (0, 0, 1, 0; 1, 0, 0)$ and $\bar{x}_3 = (0, 0, 1, 0; 0, 1, 0)$

$x_4 = (0, 0, 0, 1; 0, 1, 1)$ and $\bar{x}_4 = (0, 0, 0, 1; 1, 0, 0)$
A target of all 1’s would force selection of exactly one of each variable and its negation. However, some clauses might have multiple true literals. So define t as all 1’s for variables and all 3’s for clauses: $t = (1, 1, 1, 1; 3, 3, 3)$.

Constructing the Target
Then add *slack variables*. These are vectors that one can use to round sum up to \(t \). Specifically, add *two* copies of each clause:

\[
c_1 = (0, 0, 0, 0; 1, 0, 0) \text{ and } c'_1 = (0, 0, 0, 0; 1, 0, 0), \text{ etc.}
\]

Note that to reach 3 in a component, at least one 1 must be supplied by a literal.
The Reduction for Vectors

That is, we have built a set of vectors and a target vector such that there is a subset of vectors that sums to the target vector exactly when the boolean formula has a satisfying assignment.

(Well, actually we do have to argue this both ways.)
Finally, we go from vectors to numbers. Just think of the vector as the number in decimal:

\[t = 1111333 \text{ and } x_1 = 1000011, \bar{x}_1 = 1000000, \]
\[x_2 = 0100100, \bar{x}_2 = 0100001, \text{ etc.} \]

A worry is that one might be able to reach the target in unintended way, but that does not happen. So we have shown a reduction from 3SAT to \textsc{Subset Sum}, and so \textsc{Subset Sum} is \textsc{NP}-complete.

\textit{Believe it or not, these reductions become routine, eventually.}
Show that VERTEX_COVER is \(\mathcal{NP} \)-complete.

(Recall that the removal of a vertex cover destroys every edge, and that the input to VERTEX_COVER is graph \(G \) and integer \(k \).)

(Hint: Reduce from 3SAT using two connected nodes for each variable and three connected nodes for each clause.)
Solution to Practice

We first show that VERTEX_COVER is in \mathcal{NP}. The nondeterministic program guesses k nodes and then checks they form a vertex cover.

We then reduce 3SAT to VERTEX_COVER. We describe a procedure to take a boolean formula ϕ, and produce graph G_ϕ and integer k_ϕ, such that ϕ is satisfiable exactly when there is vertex cover of G_ϕ of k_ϕ nodes.
Assume ϕ has c clauses and m variables. For each variable v, create two adjacent nodes labeled v and \bar{v}. For each clause, create three adjacent nodes and join each to a literal in the clause.

For example, the graph G_{ϕ} for $(x \lor y \lor z) \land (\bar{x} \lor y \lor \bar{z})$:
Let $k_\phi = m + 2c$. Claim: the mapping ϕ to $\langle G_\phi, k_\phi \rangle$ is the desired reduction. The main part is to show that the mapping preserves the answer.

Suppose G_ϕ has vertex cover D of size k_ϕ. It contains at least one node from each node-pair and two nodes from each clause-triangle. Since D has size $m + 2c$, this is exactly what D is. Thus when we remove D, for each clause one node remains, and so the other end of that edge is in D. That is, the literals in D are a satisfying assignment.
Conversely, suppose ϕ has a satisfying assignment. Then let D be the m nodes corresponding to the TRUE literals in the assignment. Then each clause-triangle is dominated. So one can add two nodes from each clause-triangle and all edges incident with that clause are taken care of. It follows that G_ϕ has a vertex cover of size $m + 2c$.

That is, we have shown that 3SAT reduces to VERTEX_COVER, and so VERTEX_COVER is NP-complete.
Summary

A new problem can be proven \(\mathcal{NP} \)-complete by reduction from a problem already known to be \(\mathcal{NP} \)-complete.