NP-Completeness

We consider the hardest problems in NP.
A function f (mapping strings to strings) is \textit{polynomial-time computable} if there is constant k and TM that computes f in $O(n^k)$ time.

A language A is \textit{polynomial-time reducible} to language B, if A is reducible to B via a polynomial-time computable function. Written $A \leq_p B$.

\textit{Reductions Revisited}

Goddard 19a: 2
The key result is as before:

Fact. a) If $A \leq_p B$ and B in \mathcal{P}, then A in \mathcal{P}.

b) If $A \leq_p B$ and A not in \mathcal{P}, then B not in \mathcal{P}.

Proof (of a). Say reduction from A to B given by f computable in $O(n^k)$ time, and one can decide membership in B in $O(n^\ell)$ time.

Then build the obvious decider for A: it takes input w, computes $f(w)$ and sees whether $f(w) \in B$. This runs in $O(n^{k\ell})$ time.
NP-Complete

Definition. Language S is **NP-complete** if

a) $S \in \mathbb{NP}$; and

b) for all A in \mathbb{NP} it holds that $A \leq_P S$.

Note that this means that:

*If S is NP-complete and S in \mathbb{P}, then $\mathbb{P} = \mathbb{NP}$.**
There are many \mathcal{NP}-complete problems. What started the whole process was the great idea:

Cook’s Theorem. SAT is \mathcal{NP}-complete.

We omit the proof.
Examples

- **HAMPATH** is \mathcal{NP}-complete.
- **SUBSET_SUM** is \mathcal{NP}-complete.

(Proof of latter later.) We saw earlier that both are in \mathcal{NP}.
A set of nodes C is a **clique** if every two nodes in C are joined by an edge.

A set of nodes D is a **dominating set** if every other node is adjacent to at least one node in D.

A set of nodes V is a **vertex cover** if the removal of V destroys every edge.
Here \{C, H, I\} is clique, \{A, C, F\} is dominating set, and \{A, C, E, G, I\} is vertex cover.
We write our examples as decision problems. The following are NP-complete:

The **CLIQUE** problem:
- Input: graph G and integer k
- Question: is there clique of at least k nodes?

The **DOMINATION** problem:
- Input: graph G and integer k
- Question: is there dominating set of at most k nodes?

The **VERTEX_COVER** problem:
- Input: graph G and integer k
- Question: is there vertex cover of at most k nodes?
The 3SAT problem is NP-complete:

Input: \(\phi \) a boolean formula in conjunctive normal form with 3 literals per clause (3CNF). Question: is there a satisfying assignment?
The \mathcal{NP}-complete languages are the hardest languages in \mathcal{NP} and every language in \mathcal{NP} polynomially reduces to these. Examples of \mathcal{NP}-complete languages include SAT and HAMPATH.