Reductions

We prove questions are undecidable by showing that answering the new question would enable one to decide a question we already know is undecidable.
Recall that a T-computable function is a function from strings to strings for which there is a TM. Let A, B be languages. We say that A is reducible to B, written $A \leq_m B$, if there is a T-computable function f such that $w \in A$ exactly when $f(w) \in B$.

\[\begin{array}{c}
A \\
\bullet \\
\hline
f \\
B \\
\bullet
\end{array} \]
Reductions Preserve Hardness

Fact.

a) If A is reducible to B and B is recursive, then A is recursive.

b) If A is reducible to B and A is not recursive, then B is not recursive.

Proof (of a). Let TM R decide language B, and let function f reduce A to B. Construct TM S as follows: On input w, it computes $f(w)$ and submits this to R; then it accepts if R accepts. So S decides A.
Why The Notation \leq?

The above fact shows if one writes $A \leq_m B$, then B is as least as hard as A. This relationship behaves as one would expect. For example:

Fact. For any languages A, B and C: If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.

If f reduces A to B and g reduces B to C, then h defined by $h(w) = g(f(w))$ reduces A to C.

Goddard 15a: 4
Show that for any languages A and B: If $A \leq_m B$ then $\overline{A} \leq_m \overline{B}$.
The same reduction works! If function f reduces A to B, then it maps A to B and \bar{A} to \bar{B}.
State-Use is Undecidable

Consider the problem of determining whether a TM on input \(w \) ever enters a particular state \(q \) (called the \textit{state-use} problem).

We reduce the acceptance problem \(A_{tm} \) to this.
State-Use is Undecidable

Suppose one has algorithm for state-use problem. Then modify it into an algorithm for A_{tm}: Take input $\langle M, w \rangle$ to the acceptance problem. Then introduce a new state q' and adjust M so that any transition leading to h_a leads to q' instead. Then answering whether M uses q' on w is equivalent to answering whether M accepts w. This we know is undecidable.
Acceptance of Blank Tape is Undecidable

\[A_{bt} = \{ \langle M \rangle : M \text{ accepts } \varepsilon \} \text{ is not recursive.} \]

The proof is to reduce \(A_{tm} \) to \(A_{bt} \).
The proof is to reduce A_{tm} to A_{bt}. That is, given TM M and string w, we build new TM M_w. The reduction f is $f(\langle M, w \rangle) = \langle M_w \rangle$ where M_w is programmed to:

1. erase its input;
2. write w on the tape;
3. pass it to M; and
4. accept exactly when M accepts.

So M_w accepts ε exactly when $\langle M, w \rangle \in A_{tm}$.
Hence, if we could answer questions about A_{bt}, we would be able to answer questions about A_{tm}, which we know is undecidable.

Here is a visualization: the outer box does A_{tm} if we have a decider for A_{bt}.
Show that it is undecidable whether a TM ever writes a particular symbol on the tape.
Assume we have TM M and string w. Construct a new machine M_w. The TM M_w is programmed to erase its input, write w on the tape, and pass this over to M. If M accepts, then M_w writes a special symbol, say $\$\$ on the tape. Thus if one could answer the question whether M_w writes $\$$ or not, one would be able to decide A_{tm}, which is undecidable.
Rice’s Theorem

Actually, most questions about TMs are undecidable:

Rice’s Theorem. Any question about r.e. languages that is nontrivial is undecidable.

Nontrivial means there is some language for which the answer is “yes” and some for which the answer is “no”. We omit the beautiful but simple reduction.
A reduction is a mapping that preserves membership. A reduction can be used to show that one problem is undecidable given the undecidability of another problem. Some problems about TMs are proven undecidable by reduction from the acceptance problem A_{tm}.