Matrix Equations
Matrix Equations

Fact. The matrix equation $Ax = b$ has a solution if and only if b is a linear combination of the columns of A.

In particular:

Fact. Testing whether a vector b is in the span of some collection of vectors is equivalent to asking whether the augmented matrix with those columns is consistent.
When is Solution Guaranteed?

Fact. Matrix equation $Ax = b$ has a solution for every vector b if and only if the columns of A span \mathbb{R}^m, if and only if A has a pivot in each row.

Proof uses the fact that if there is a pivot in each row, then the condition for inconsistent system cannot be satisfied. And if there is not a pivot in each row, then we can choose b where the condition for inconsistent system holds.
Homogenous Systems

Defn. A *homogeneous system* is $Ax = 0$. It always has at least the *trivial* solution $x = 0$.
The solution to a general linear system can be written in \textit{parametric vector form} as: one vector plus an arbitrary linear combination of vectors satisfying the corresponding homogeneous system.
An Example of Parametric Vector Form

Earlier we gave a solution as something like

\[x_1 = -1 - 2x_2 + 3x_4 \]
\[x_3 = 5 - x_4 \]

Now we add the equations \(x_2 = x_2 \) and \(x_4 = x_4 \). This system has solution:

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
\end{bmatrix} =
\begin{bmatrix}
 -1 \\
 0 \\
 5 \\
 0 \\
\end{bmatrix} + x_2 \begin{bmatrix}
 -2 \\
 1 \\
 0 \\
 0 \\
\end{bmatrix} + x_4 \begin{bmatrix}
 3 \\
 0 \\
 -1 \\
 1 \\
\end{bmatrix}
\]
Defn. A collection of vectors is **linearly independent** if the only linear combination of them that equals 0 is the trivial combination (all weights zero). Otherwise it is said to be **linearly dependent**.

Note that the collection is linearly dependent if some vector in it can be written as a linear combination of the other vectors.
Key Examples

œ Two vectors u and v are linearly dependent if and only if one is a multiple of the other. If they are linearly independent, then they span a plane through the origin. Further, inserting w into the collection produces a linearly independent set if and only if w is not in $Span\{u, v\}$.

œ A set containing the zero vector is automatically linearly dependent.
When Homogenrous System has Unique Solution?

Fact. The columns of matrix A are linearly independent

$\iff Ax = 0$ has only the trivial solution

\iff there is no free variable.
The matrix equation $Ax = b$ has a solution if and only if b is a linear combination of the columns of A. This is guaranteed precisely when the columns of A span \mathbb{R}^m; equivalently A has a pivot in each row.

A homogeneous system equals 0. Parametric vector form represents the solution as: one vector plus arbitrary linear combination of vectors satisfying the homogeneous system.
A collection of vectors is linearly independent if the only linear combination of them that equals 0 is the trivial combination.

The homogenous system $Ax = 0$ has a unique solution precisely when the columns of A are linearly independent; equivalently there is no free variable.