Projections
Fact. If W is a subspace of V, then every vector y in V can be written uniquely as the sum of a vector in W and a vector in W^\perp.

We will call the vector in W the projection of y onto W.
Consider in \mathbb{R}^3 the plane P given by $3x+4y-z = 0$. Say we want $v = (9, 9, 11)$ as the sum of vector in P and vector in P^\perp. We will see an algorithm below.

But for ad hoc approach: we know that any vector in P^\perp is multiple of $w = (3, 4, -1)$. So if we assume the requisite vector in P^\perp is aw, then we need $(v - aw) \cdot v = 0$. This solves to $a = 2$; so $v = 2w + (3, 1, 13)$.
Defn. The (orthogonal) projection of vector y onto vector u is its “shadow”. It is denoted by $\text{proj}_u(y)$.
Fact. For vectors \(y \) and \(u \), the projection of \(y \) onto \(u \) is given by:

\[
\text{proj}_u(y) = \frac{y \cdot u}{u \cdot u} u
\]
Example Projection

If \(a = (3, 4) \) and \(b = (-5, 2) \) then
\[
\operatorname{proj}_b(a) = \left(\frac{35}{29}, -\frac{14}{29}\right) \quad \text{and}
\]
\[
\operatorname{proj}_a(b) = \left(-\frac{21}{25}, -\frac{28}{25}\right).
\]
Projection onto a Subspace

Defn. The (orthogonal) projection $\text{proj}_W(y)$ of the vector y onto the vector space W is vector in W such that $y - \text{proj}_W(y)$ in W^\perp.

Fact. If we think of y as a point, then the projection of it onto W is the closest point of W to it.
Fact. If W is a subspace with orthonormal basis $\{w_i\}$, then

$$\text{proj}_W(y) = \sum_i (y \cdot w_i) w_i$$
If W is a subspace of V, then every vector y in V can be written uniquely as the sum of a vector in W and a vector in W^\perp. The (orthogonal) projection $\text{proj}_W(y)$ of y onto W is the vector in W such that $y - \text{proj}_W(y)$ in W^\perp. Equivalently, the projection is the closest point of W to y.
For vectors y and u, the projection of y onto u is given by: $\text{proj}_u(y) = \frac{y \cdot u}{u \cdot u} u$. If W is a subspace with orthonormal basis $\{w_i\}$, then $\text{proj}_W(y) = \sum_i (y \cdot w_i) w_i$.

Summary (cont)