Algorithmic Analysis

6.1 Algorithm Analysis

The goal of algorithmic analysis is to determine how the running time behaves as \(n \) gets large. The value \(n \) is usually the size of the structure or the number of elements it has. For example, traversing an array takes time proportional to \(n \) time.

We want to measure either time or space requirements of an algorithm. Time is the number of atomic operations executed. We cannot count everything; we just want an estimate. So, depending on the situation, one might count: arithmetic operations (usually assume addition and multiplication atomic, but not for large integer calculations); comparisons; procedure calls; or assignment statements. Ideally, pick one which simple to count but mirrors the true running time.

6.2 Order Notation

We define big-O:

\[
f(n) \text{ is } O(g(n)) \text{ if the growth of } f(n) \text{ is at most the growth of } g(n).
\]

So \(5n \) is \(O(n^2) \) but \(n^2 \) is not \(O(5n) \). Note that constants do not matter; saying \(f \) is \(O(\sqrt{n}) \) is the same thing as saying \(f \) is \(O(\sqrt{22n}) \).

The order (or growth rate) of a function is the simplest smallest function that it is \(O \) of. It ignores coefficients and everything except the dominant term.

Example. Some would say \(f(n) = 2n^2 + 3n + 1 \) is \(O(n^3) \) and \(O(n^2) \). But its order is \(n^2 \).

Terminology: The notation \(O(1) \) means constant-time. Linear means proportional to \(n \). Quadratic means \(O(n^2) \). Sublinear means that the ratio \(f(n)/n \) tends to 0 as \(n \to \infty \) (sometimes written \(o(n) \)).

Long Arithmetic. Long addition of two \(n \)-digit numbers is linear. Long multiplication of two \(n \)-digit numbers is quadratic.

(Check!)
6.3 Combining Functions

- **ADD.** If \(T_1(n) \) is \(O(f(n)) \) and \(T_2(n) \) is \(O(g(n)) \), then \(T_1(n) + T_2(n) \) is \(\max(O(f(n)), O(g(n))) \).
 That is, when you add, the larger order takes over.

- **MULTIPLY.** If \(T_1(n) \) is \(O(f(n)) \) and \(T_2(n) \) is \(O(g(n)) \), then \(T_1(n) \times T_2(n) \) is \(O(f(n) \times g(n)) \).

 \[\text{Example.} \ (n^4 + n) \times (3n^3 - 5) + 6n^6 \text{ has order } n^7 \]

6.4 Logarithms

The **log base 2** of a number is how many times you need to multiply 2 together to get that number. That is, \(\log n = L \iff 2^L = n \). Unless otherwise specified, computer science log is always base 2. So it gives the **number of bits**. The function \(\log n \) grows forever, but it grows (much) slower than any power of \(n \).

 \[\text{Example.} \ Binary \ search \ takes \ O(\log n) \ time. \]

6.5 Loops and Consecutiveness

- **Loop:** How many times \(\times \) average case of loop

- **Consecutive blocks:** this is the sum and hence the maximum

 \[\text{Primality Testing. The algorithm is} \]
 \[
 \text{for(int } y=2; \ y<N; \ y++) \\
 \quad \text{if(} N/y==0 \) \\
 \quad \quad \text{return false;} \\
 \quad \text{return true;} \\
 \]
 \[\text{This takes } O(\sqrt{N}) \text{ time if the number is not prime, since then the smallest factor is at most } \sqrt{N}. \text{ But if the number is prime, then it takes } O(N) \text{ time. And, if we write the input as a } B \text{-bit number, this is } O(2^{B/2}) \text{ time.} \]
 \[\text{(Can one do better?)} \]

Note that array access is assumed to take constant time.
Example. A sequence of positive integers is a \textit{radio sequence} if two integers the same value are at least that many places apart. Meaning, two 1s cannot be consecutive; two 2s must have at least 2 integers between them; etc. Here is a test of this: this method is \textit{quadratic}.

\begin{verbatim}
for(int x=0; x<len; x++)
 for(int y=x+1; y<len; y++)
 if(array[x]==array[y] && y-x<=array[x])
 return false;
return true;
\end{verbatim}