22.1 Breadth-first Search

A search is a systematic way of searching through the nodes for a specific node. The two standard searches are breadth-first search and depth-first search, which both run in linear time.

The idea behind breadth-first search is to:

Visit the source; then all its neighbors; then all their neighbors; and so on.

If the graph is a tree and one starts at the root, then one visits the root, then the root’s children, then the nodes at depth 2, and so on. That is, one level at a time. This is sometimes called level ordering.

BFS uses a queue: each time a node is visited, one adds its (not yet visited) out-neighbors to the queue of nodes to be visited. The next node to be visited is extracted from the front of the queue.

Algorithm: BFS (start):
 enqueue start
 while queue not empty {
 v = dequeue
 for all out-neighbors w of v
 if (w not visited) {
 visit w
 enqueue w
 }
 }

22.2 Depth-First Search

The idea for depth-first search (DFS) is “labyrinth wandering”:

keep exploring new vertex from current vertex; when get stuck, backtrack to most recent vertex with unexplored neighbors
In DFS, the search continues going deeper into the graph whenever possible. When the search reaches a dead end, it backtracks to the last (visited) node that has unvisited neighbors, and continues searching from there. A DFS uses a stack: each time a node is visited, its unvisited neighbors are pushed onto the stack for later use, while one of its children is explored next. When one reaches a dead end, one pops off the stack. The edges/arcs used to discover new vertices form a tree.

EXAMPLE. Here is graph and a DFS-tree from vertex A:

![Graph and DFS-tree example]

If the graph is itself a tree, we can still use DFS. Here is an example:

![Tree example]

Algorithm: DFS(v):

for all edges e outgoing from v
 w = other end of e
 if w unvisited then {
 label e as tree-edge
 recursively call DFS(w)
 }

Note:

- DFS visits all vertices that are reachable
- DFS is fastest if the graph uses adjacency list
- to keep track of whether visited a vertex, one must add field to vertex (the decorator pattern)

22.3 Test for Strong Connectivity

Recall that a directed graph is strongly connected if one can get from every vertex to every other vertex. Here is an algorithm to test whether a directed graph is strongly connected or not:

![Algorithm example]

70
Algorithm: 1. Do a DFS from arbitrary vertex \(v \) & check that
 all vertices are reached
 2. Reverse all arcs and repeat

Why does this work? Think of vertex \(v \) as the hub...

\[\text{22.4 Distance}\]

The distance between two vertices is the minimum number of arcs/edges on path
 between them. In a weighted graph, the weight of a path is the sum of weights
 of arcs/edges. The distance between two vertices is the minimum weight of a path
 between them. For example, in a BFS in an unweighted graph, vertices are visited in
 order of their distance from the start.

Example. In the example graph below, the distance from \(A \) to \(E \) is 7 (via vertices
 \(B \) and \(D \)):

\[\text{22.5 Dijkstra’s Algorithm}\]

Dijkstra’s algorithm determines the distance from a start vertex to all other vertices.
 The idea is to

 \(\text{Determine distances in increasing distance from the start.} \)

For each vertex, maintain \(\text{dist} \) giving minimum weight of path to it found so far. Each
 iteration, choose a vertex of minimum \(\text{dist} \), finalize it and update all \(\text{dist} \) values.

Algorithm: Dijkstra (start):
 initialise \(\text{dist} \) for each vertex
 while some vertex un-finalized {
 \(v = \text{un-finalized with minimum dist} \)
 finalize \(v \)
 for all out-neighbors \(w \) of \(v \)
 \(\text{dist}(w) = \min(\text{dist}(w), \text{dist}(v)+\text{cost \(v-w \)}) \)
 }
If doing this by hand, one can set it out in a table. Each round, one circles the smallest value in an unfinalized column, and then updates the values in all other unfinalized columns.

EXAMPLE. Here are the steps of Dijkstra’s algorithm on the graph of the previous page, starting at A.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Comments:

• Why Dijkstra works? Exercise.

• Implementation: store boolean array known. To get the actual shortest path, store Vertex array prev.

• The running time: simplest implementation gives a running time of \(O(n^2) \). To speed up, use a priority queue that supports decreaseKey.