21.1 Graphs

A graph has two parts: **vertices** (one vertex) also called **nodes**. An **undirected graph** has undirected **edges**. Two vertices joined by edge are **neighbors**. A **directed graph** has directed **edges/arcs**; each arc goes from **in-neighbor** to **out-neighbor**. Examples include:

- city map
- circuit diagram
- chemical molecule
- family tree

A **path** is sequence of vertices with successive vertices joined by edge/arc. A **cycle** is a sequence of vertices ending up where started such that successive vertices are joined by edge/arc. A graph is **connected** (a directed graph is **strongly connected**) if there is a path from every vertex to every other vertex.

![Connected and Not Strongly Connected Graphs]

21.2 Graph Representation

There are two standard approaches to storing a graph:

Adjacency Matrix

1) container of numbered vertices, and
2) array where each entry has info about the corresponding edge.

Adjacency List

1) container of vertices, and
2) for each vertex an unsorted bag of out-neighbors.
An example directed graph (with labeled vertices and arcs):

Adjacency array:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>—</td>
<td>orange</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B</td>
<td>—</td>
<td>—</td>
<td>black</td>
<td>green</td>
<td>blue</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D</td>
<td>—</td>
<td>—</td>
<td>yellow</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>E</td>
<td>white</td>
<td>red</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Adjacency list:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>orange, B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>black, C</td>
<td>green, D</td>
<td>blue, E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D</td>
<td>—</td>
<td>—</td>
<td>yellow</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>E</td>
<td>red, B</td>
<td>white, A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The advantage of the adjacency matrix is that determining $\text{isAdjacent}(u,v)$ is $O(1)$. The disadvantage of adjacency matrix is that it can be space-inefficient, and enumerating outNeighbors etc. can be slow.

21.3 Aside

Practice. Draw each of the following without lifting your pen or going over the same line twice.

21.4 Topological Sort

A *DAG*, directed acyclic graph, is a directed graph without directed cycles. The classic application is scheduling constraints between tasks of a project.
A topological ordering is an ordering of the vertices such that every arc goes from lower number to higher number vertex.

Example. In the following DAG, one topological ordering is: E A F B D C.

A source is a vertex with no in-arcs and a sink is one with no out-arcs.

Theorem:

a) If a directed graph has a cycle, then there is no topological ordering.
b) A DAG has at least one source and one sink.
c) A DAG has a topological ordering.

Consider the proof of (a). If there is a cycle, then we have an insoluble constraint: if, say the cycle is $A \rightarrow B \rightarrow C \rightarrow A$, then that means A must occur before B, B before C, and C before A, which cannot be done.

Consider the proof of (b). We prove the contrapositive. Consider a directed graph without a sink. Then consider walking around the graph. Every time we visit a vertex we can still leave, because it is not a sink. Because the graph is finite, we must eventually revisit a vertex we’ve been to before. This means that the graph has a cycle. The proof for the existence of a source is similar.

The proof of (c) is given by the algorithm below.

21.5 Algorithm for Topological Ordering

Here is an algorithm for finding a topological ordering:

Algorithm: TopologicalOrdering()

Repeatedly

Find source, output and remove

For efficiency, use the Adjacency List representation of the graph. Also:

1. maintain a counter in-degree at each vertex v; this counts the arcs into the vertex from “nondeleted” vertices, and decrement every time the current source has an arc to v (no actual deletions).

2. every time a decrement creates a source, add it to a container of sources.

There is even an efficient way to initially calculate the in-degrees at all vertices simultaneously. (How?)
Sample Code

Here is an abstract base class \texttt{DAG}, an implementation of topological sort for that class, and an adjacency-list implementation of the class

\begin{verbatim}
Dag.h
GraphAlgorithms.cpp
AListDAG.h
AListDAG.cpp
\end{verbatim}