Chapter G3: NP-Completeness

While humanity cannot determine whether P = NP or not, we can, however, identify problems that are the hardest in NP. These are called the NP-complete problems. They have the property that if there is a polynomial-time algorithm for any one of them, then there is a polynomial-time algorithm for every problem in NP.

G3.1 Reductions

For decision problems A and B, A is said to be polynomial-time reducible to B (written $A \leq_p B$) if there is a polynomial-time computable function f such that

\[q \text{ is a Yes-instance of } A \iff f(q) \text{ is a Yes-instance of } B \]

That is, f translates questions about A into questions about B while preserving the answer to the question.

The key result:

Lemma.

a) If $A \leq_p B$ and B in P, then A in P.
b) If $A \leq_p B$ and A not in P, then B not in P.

Proof. Suppose the reduction from A to B is given by the function f which is computable in $O(n^k)$ time. And suppose we can decide questions about B in $O(n^\ell)$ time. Then we build a polynomial-time decider for A as follows. It takes the input q, computes $f(q)$ and then sees whether $f(q)$ is a Yes-instance of B or not. Does the program run in polynomial-time? Yes. If q has length n then the length of $f(q)$ is at most $O(n^k)$ (since a program can only write one symbol each step). Then the test about B takes $O(n^{k\ell})$ time. And that’s polynomial. \(\diamondsuit\)

G3.2 NP-completeness

We need a definition:

A decision problem S is defined to be NP-complete if

a) It is in NP; and
b) For all A in NP it holds that $A \leq_p S$.

Note that this means that:

- If S in NP-complete and S in P, then P=NP.
- If S is NP-complete and T in NP and $S \leq_p T$, then T is NP-complete.
G3.3 Examples

There are tomes of NP-complete problems. The standard method to proving NP-completeness is to take a problem that is known to be NP-complete and reduce it to your problem. What started the whole process going was Cook’s original result:

Theorem. SAT is NP-complete.

We omit the proof. Some more examples:

- The 3SAT problem is NP-complete:

 3SAT

 Input: ϕ a boolean formula in conjunctive form with three literals per clause

 Question: Is there a satisfying assignment?

- HAMPATH is NP-complete.

- Domination. A set of nodes in a graph is a dominating set if every other node is adjacent to at least one of these nodes. For example, in the graph on page 6, $\{A, D\}$ is a dominating set.

 The DOMINATION problem is NP-complete:

 DOMINATION

 Input: Graph G and integer k

 Question: Does there exist a dominating set of G of at most k nodes?

To show a new problem is NP-complete, one shows that the problem is in NP, and then provides a reduction from a known NP-complete problem. There have been probably more than a million such proofs made.

Exercises

1. Show that the independence number of a graph with maximum degree 2 can be computed in polynomial time.

2. Show that if P=NP then there is a polynomial-time algorithm which on input a graph finds a hamiltonian path if one exists. (Note: this is not immediate.)

3. Show that if P=NP then there is a polynomial-time algorithm which on input ϕ finds a satisfying assignment if one exists.