WORM Colorings of Graphs

Wayne Goddard, Kirsti Wash, and Honghai Xu
Clemson University, Trinity College, Clemson University
Rainbow Colorings

We color the vertices. A *rainbow* subgraph is one where every vertex has a different color.

Avoiding rainbow subgraphs is easy...
Monochromatic Colorings

A *monochromatic* subgraph is one where every vertex has the same color.

Avoiding monochromatic subgraphs is easy...
Every coloring of K_5 must have either rainbow or monochromatic K_3. (Pigeonhole. . .)

But we can color K_4 without. (Two colors each used twice.)
Fix graph F. An F-WORM coloring of graph G is a coloring of the vertices such that G is Without a Rainbow or Monochromatic subgraph isomorphic to F.
If graph G has F-WORM coloring, we define:

- $W^+(G, F)$ is maximum number of colors in F-WORM coloring of G
- $W^-(G, F)$ is minimum number of colors in F-WORM coloring of G.
Warm-Ups

- We assume F has at least three vertices. (K_2 and $2K_1$ always rainbow/monochromatic.)
- $W^+(K_4, K_3) = W^-(K_4, K_3) = 2$.
- If G is bipartite, a proper 2-coloring is F-WORM. (Can generalize...)
Bujtás et al.: 3-Consecutive C-colorings

Axenovich et al.: Mainly questions for edge colorings.
Sample result.

Theorem. $W^{-}(P_n, P_3) = 2$

Theorem. $W^{+}(P_n, P_3) = \lceil (n + 1)/2 \rceil$
Theorem. A graph has a P_3-WORM coloring if and only if it has a P_3-WORM coloring using only 2 colors.

Multiple proofs. . .
Proof Part 1

The monochromatic edges form a matching:

\[\text{vegasWORM: 11}\]
Proof Part 2

The rainbow edges form a bipartite graph:
Proof Part 3

Bipartite coloring plus matching is P_3-WORM.
By above, P_3-WORM colorings exists if and only if one with 2 colors.

Such a coloring is a 2-coloring such that each vertex has at most one neighbor of the same color. That is, *a coloring with defect 1*. (Known NP-hard: R. Cowen.)
Failed Conjecture

Not guaranteed a P_3-WORM coloring using j colors for $2 < j < W^+(G, P_3)$. This graph has P_3-WORM colorings with exactly 2 or 4 colors:
For cubic, P_3-WORM coloring exists by Lovász. Conjecture that $W^-(G, P_3) \leq n/4 + 1$ for all cubic G. Here is extremal.
For Maximal Outerplanar Graphs

Can show: If exists, can only use 2 colors.

Can show: Characterization.
Theorem. If graphs G and H have a P_3-WORM coloring, then $W^+(G \square H, P_3) = 2$.

Proof idea: start at any vertex and grow coloring around it.
And Now For Something Completely Non-Different

Some results generalize to other stars, paths, trees etc.

But the fundamental: if exists then with 2 colors, does not.
Sample results:

- For outerplanar: exists (arboricity 2); formula for W^+
- For cubic graphs: exists (by Lovász again); bounds for W^+
Choose set of graphs \mathcal{F} and define a \mathcal{F}-WORM coloring.

Define $B(G, F)$ as minimum number of monochromatic or rainbow copies of F; measures “how far away” G is from having a WORM coloring.
Your Moment of Oz

Is the yellow-brick road “monochromatic” or “over the rainbow”?