2. (a) Say G has a perfect matching. Then $G \Box H$ has a spanning subgraph consisting of copies of G. Take the perfect matching withing each copy of G.
(b) $K_3 \Box K_3$ does not have a perfect matching. $K_3 \Box K_{1,3}$ does have a perfect matching.

3. (a) $K_{2,2,2}$
 (b) Petersen Graph
 (c) 99
 (d) $1 \leq \kappa \leq 198$
 (e) $99 \leq \chi \leq 198$

4. (a) $\chi(G) + \chi(H)$.
 (b) If we remove edge e in G, then the overall chromatic number goes down. From (a) this means $\chi(G - e) < \chi(G)$, so G is color-critical.
 (c) If we remove an edge e inside G, then the overall chromatic goes down since G is color-critical. Similarly with an edge in H. So consider an edge e between graphs G and H; say joining g of G to h of H. Since G is color-critical, $\chi(G - g) < \chi(G)$. Similarly $\chi(H - h) < \chi(H)$. Take the colorings of $G - g$ and $H - h$ and give g and h the same new color. This uses $\chi(G) + \chi(H) - 1$ colors.