Summary of West 3.1: Matchings and Covers

A matching is a set of edges no two of which touch. A vertex is saturated if it is the end of an edge in the matching. A perfect matching saturates all the vertices. For example, K_{2n} has $(2n)! / 2^n n!$ perfect matchings.

Note that a maximal matching is not the same as a maximum matching. Define symmetric difference $G \triangle H$ as the subgraph with the edges that are in precisely one of the graphs. Observation: if G and H are matchings, then $G \triangle H$ consists of paths and even cycles.

Given matching M, an M-alternating path is one where the edges alternate between in and out of M. An M-augmenting path is a nontrivial M-alternating path that starts and ends at an M-unsaturated vertex.

Berge: A matching M is maximum if and only if there is no M-augmenting path. To prove existence of augmenting path if M not maximum, consider union or symmetric difference of M and the actual maximum matching M'; consider a component where M' is in the majority.

Hall: In a bipartite graph with one side X: there is a matching that saturates X if and only if $|N(S)| \geq |S|$ for all $S \subseteq X$. TONCAS. Proof of sufficiency: consider an unsaturated vertex u and let S be the vertices of X reachable from u via M-alternating paths. If there is no M-augmenting path, then $|N(S)| = |S| - 1$. Corollary: a regular bipartite graph can be decomposed into perfect matchings.

A vertex cover is a set of vertices intersecting all edges. A set is a vertex cover if and only if its complement is an independent set. An edge cover is a set of edges saturating all vertices. Notation: α is maximum size of independent set, β is minimum size of vertex cover, α' is maximum size of matching, β' is minimum size of edge cover.

König–Egerváry: in a bipartite graph, maximum matching equals minimum vertex cover. Inequality always. (Proof of equality: show that a minimum vertex cover restricted to each side obeys Hall.)

Gallai: $\alpha' + \beta' = n$ for graph without isolates.
Summary of West 3.2,3.3: Algorithms and applications, matchings in general graphs

Berge’s theorem gives an algorithm to find a maximum matching in a bipartite graph. Starting at an unmatched vertex, one determines the set of vertices reachable by M-alternating paths, and thus either finds an M-augmenting path or proves that none exists. The Hungarian method [omitted] finds a matching of maximum weight.

Tutte’s 1-factor theorem says that a graph has a perfect matching if and only if $o(G - S) \leq |S|$ for all sets of vertices S, where $o(G - S)$ is the number of odd components of $G - S$. [Proof omitted]

Petersen’s theorem says that any cubic (3-regular) graph without a cut-edge has a perfect matching.