1. Give three disjoint bases for \(\mathbb{R}^2 \).

2. In a paragraph or two, outline the proof that for a finite-dimensional vector space \(V \) and operator \(T: V \to W \) it holds that \(\dim V = \dim \text{null } T + \dim \text{range } T \).

3. True or false:
 (a) For any subspace \(U \) it holds that \(U + U = U \).
 (b) \(\mathbb{C}^4 \) is isomorphic to \(\mathbb{R}^4 \).
 (c) For any vector space \(V \): If \(S, T \in \mathcal{L}(V) \), and \(S, T \) both invertible, then \(ST \) invertible.
 (d) For any vector space \(V \): If \(S, T \in \mathcal{L}(V) \), and \(ST \) invertible, then \(S \) and \(T \) both invertible.

4. Give an example of spaces \(V \) and \(W \) such that \(\dim \mathcal{L}(V, W) = 5 \).

5. Consider the vector space \(\mathcal{P}_2[\mathbb{R}] \). Let \(D \) be the operator differentiation (for example \(D(3x^2 + 5) = 6x \)).
 (a) Give a basis for \(\text{null } D \) and \(\text{range } D \).
 (b) Determine the matrix of \(D \) with respect to the standard basis \((1, x, x^2) \).
 (c) Explain what that tells us about the eigenvalues of \(D \).
 (d) Determine the matrix of \(D \) with respect to the basis \((1 + x^2, 1 + x, x + x^2) \).

6. (a) Give an example of a space and operator where every nonzero vector is an eigenvector.
 (b) Give an example of a space and operator where no nonzero vector is an eigenvector.