Summary of Axler Chapter 6b

By Gram–Schmidt: If T has an upper-triangular matrix for some basis, then T has an upper-triangular matrix with respect to some orthonormal basis of V.

The orthogonal complement of set U is the set of vectors that are orthogonal to every vector in U, written U^\perp. U^\perp is always a subspace. Theorem: If U is a subspace of V, then $V = U \oplus U^\perp$. (To show $U + U^\perp$ spans V, start with an orthonormal basis of U.) Also, $U = (U^\perp)^\perp$.

Given subspace U of V, the orthogonal projection operator $P_U: V \to U$ is defined by mapping v to u where $v = u + w$ with $u \in U$ and $w \in U^\perp$. Theorem: $||v - P_U v|| \leq ||v - u||$ for every $u \in U$. That is, $P_U v$ is the “closest” element of U to v.

A linear functional is a linear map whose codomain is the scalars \mathbb{F}. Theorem: If φ is a linear functional, then there is a unique vector v such that $\varphi(u) = \langle u, v \rangle$ for all u. (For the existence, start with an orthonormal basis of V; then $v = \sum_i \varphi(e_i) e_i$.)

Let $T \in \mathcal{L}(V, W)$. Then the adjoint of T, denoted T^*, is in $\mathcal{L}(W, V)$, and is defined so that $\langle Tv, w \rangle = \langle v, T^* w \rangle$ for all v, w. There is a connection between the null space, range, orthogonal complement, and adjoint. For example, $\text{null}(T^*) = (\text{range } T)^\perp$. The matrix of the adjoint T^* is given by the conjugate transpose of the matrix of T (provided T was given in terms of an orthonormal basis).