Math 4190 — Goddard — Fall18
Assignment 9

You may work in pairs, and submit one answer sheet for the pair.

1. Define the graph G_m as the graph that is a grid of $3m$ vertices arranged in 3 rows and m columns such that each vertex has an edge to the vertices to the left, above, to the right, and below it, if they exist. For example, G_4 is illustrated here.

![Image of graph G_4]

Complete the following, with justifications:
(a) G_m has an Euler tour if and only if
(b) G_m has a Hamilton cycle if and only if

2. A tournament is obtained by taking the complete graph K_n and orienting every edge to form a directed graph (where every road is a one-way street).
(a) Show that a tournament always has a directed Hamilton path.
(b) Show that a tournament might not have a directed Hamilton cycle.

3. The prism of a graph G on n vertices is obtained by taking two separate copies of G and adding n “parallel” edges joining the corresponding vertices. For example, the prism of the hypercube Q_n is Q_{n+1}. State and prove the relationship between the chromatic number of G and the chromatic number of its prism.

4. Calculate the chromatic number of the following graph:

![Image of graph]

5. Show that $K_{2,m}$ is planar for all m.

6. For the general Hamming code with k check bits, show that the distance is exactly 3.

7. (a) Consider a code with distance d with d odd. Show that if one appends a parity bit to every string, then the new code has distance $d + 1$.
(b) Give an example that shows that part (a) is not necessarily true if d is even.

Due: Start of class Wednesday 28 November

Game of the Week. Kudu biltong.