Let $A = \{2, 3, 5\}$ and $B = \{0, 1, 2, 3\}$. Let X be the twelve ordered pairs (a, b) with $a \in A$ and $b \in B$.

Define a relation R on X by saying that $(a_1, b_1)R(a_2, b_2)$ iff $a_1 + b_2 = a_2 + b_1$.

1. Verify that R is an equivalence relation.

Note that the definition can be rewritten to say that pair is related iff $a_1 - b_1 = a_2 - b_2$.
Then argue that the three conditions are satisfied.

2. Find the equivalence classes of X under R.

The pairs are grouped based on the difference $a - b$.
The difference can be any integer from -1 to 5 inclusive.
There are seven equivalence classes.