Construct a proof that if \(m \) is odd, then \(m^2 - 1 \) is a multiple of 4.

If \(m \) is odd, then \(m = 2s + 1 \) for some integer \(s \). Then \(m^2 - 1 = (4s^2 + 4s + 1) - 1 = 4(s^2 + s) \), which is a multiple of 4.

Alternatively, factor \(m^2 - 1 = (m - 1)(m + 1) \), so that it’s a product of two even numbers.