1. Complete the following.
 (a) A recursive definition of a rooted tree is that (i) a single root is a rooted tree, and
 (ii) adding a vertex & an edge joining it to a parent yields a rooted tree.
 (b) If a graph has the property that between every two vertices there is a unique
 path, then it is a tree.
 (c) One definition of a tree is that it is a graph that is connected and contains no cycle.
 (d) A tree with 2021 vertices has 2020 edges.

2. Consider graphs with 8 vertices that have degree sequence 4, 2, 2, 2, 1, 1, 1, 1.
 (a) Draw a tree with such a degree sequence.

 (b) Draw a graph with such a degree sequence that is not a tree.

3. Call a rooted tree gorgeous if every vertex has an even number of children. Draw all
 gorgeous rooted trees with 7 vertices, assuming vertices are indistinguishable and the
 order of children doesn’t matter.

4. For $m \geq 1$, the doubleFan graph D_m is defined by taking a path with m vertices and
 adding two new vertices and joining each new vertex to each vertex on the path. For
 example, the graph D_5 is shown here.

 (a) For what values of m does the doubleFan D_m have an Euler tour?
 (b) For what values of m does the doubleFan D_m have an Euler trail?