You may work in pairs, and submit one answer sheet for the pair.

1. Show that the product of four consecutive integers is a multiple of 12.

2. Give a proof by contradiction that if x, y, z are integers such that $xyz \leq 1000$, then at least one of x, y, z is at most 10.

3. Let p be a prime number other than 2. Prove that $2p$ cannot be written as the difference of squares (of integers).

4. Calculate the gcd of:

 (a) 91 and 287.

 (b) 12^{100} and 100^{12}.

5. Give the multiplication tables for \mathbb{Z}_5 and \mathbb{Z}_8.

6. Consider \mathbb{Z}_{10}.

 (a) List all elements of \mathbb{Z}_{10}.

 (b) What is the inverse of 3?

 (c) Give all square-roots of 6. (That is, all elements whose square is 6.)

 (d) How many rows of the multiplication table contain every element?

Due: 10:10am Wednesday 29 September