1. Give, with justification, a formula for the minimum number of edges that must be added to a general connected graph to make it have an Euler tour, provided we allow multiple edges (that is, two vertices can be joined by more than one edge).

2. Does the following graph have a Hamilton path? A Hamilton cycle?

![Graph Image]

3. The wheel W_k is obtained from the cycle on k vertices by adding one new vertex connected to all other vertices. Calculate the chromatic number of a wheel.

4. Show that the hypercube Q_4 is not planar.

5. Assume n and a_1, \ldots, a_k are positive integers. Then the graph $Z_n[a_1, \ldots, a_k]$ is defined as follows. The vertex set is Z_n. For each vertex x and each a_i, there is an edge from x to $x + a_i$ (with arithmetic in Z_n). For example, here is $Z_9[1,3]$.

![Graph Image]

(a) Draw $Z_6[2,3]$.
(b) When is $Z_{2021}[a_1, \ldots, a_k]$ bipartite?
(c) When is $Z_{2021}[a_1]$ connected?
(d) When is $Z_{2021}[a_1, a_2]$ connected?

Due: 10:10am Wednesday 17 November