Content/Goals/Learning Outcomes. An introduction to the use of computers in mathematics. By the end you should

- be able to program with conditionals/loops, arrays, functions, calculations & graphics
- be able to use MatLab to solve a mathematical problem
- be able to read a MatLab program
- understand the opportunities and pitfalls of the use of computers in mathematics
- appreciate algorithms

Grade. The grade is determined as follows. First, a class-grade G is obtained as a weighted average:

Assignments: 35%, Canvas quizzes: 15%, In-class mini-tests: 50%.

The overall numerical grade is the maximum of $.75G + .25F$ and $.97G + .03F$ where F is grade on the final. The cut-off for an A will be 89.5; the cut-off for a B will be 80; the cut-off for a C will be 70.

Assignments. Unless otherwise specified, these are individual assignments, and must be strictly your own work and are not to be shown to anyone else. If accepted at all, a submission that is d days late will be assessed an absolute penalty of $3d^2 + 2$ points (out of 100).

Logistics. See separate hand-out for logistics.

Notes/Text. You should use an intro MatLab book for supplementary reading or for example MIT Courseware (Yossi Farjoun: 18.S997 Introduction to MATLAB Programming, Fall 2011). Most handouts are archived at people.cs.clemson.edu/~goddard/handouts/math3600.

For more rules and regulations, see separate hand-out.