Create a MATLAB function `tripleInfluence` that takes as parameters
(a) the number of rows/columns;
(b) the coordinates of the three influencers; and
(c) the metric to be used.

A square grid is divided into cells. Three cells are chosen as influencers. Each cell is colored
with a color determined by which influencer it is closest to, except that the three influencers
are specially colored. (Ties can be broken arbitrarily.)

Your function should allow three metrics (measures of distance): (1) for Manhattan distance,
(2) for standard Euclidean distance, and (3) for ℓ_∞, which is the maximum of the absolute
difference. (I found it useful to create a “local function” that takes two points and the metric
parameter and returns their distance: a local function goes after the main function (which
now should be terminated by end).)

Sample run:

```matlab
>> tripleInfluence( 40, [ 3 3], [27, 7], [33,33], 2 )
```