The discrete exponentiation problem is to determine \(t = g^e \mod n \), that is, the remainder when \(g^e \) is divided by \(n \). For example, \(2^4 \mod 11 \) is 5 since \(2^4 = 16 \), which is 5 more than 11.

One (very slow) way to calculate the discrete exponentiation is to simply multiply \(g \) by itself the requisite number of times, at each stage taking the remainder when divided by \(n \). (It can be shown that this is mathematically valid.)

The inverse problem is called the discrete logarithm problem. Here you are given the answer \(t \) and \(g, n \), and must determine \(e \). One way to calculate the discrete logarithm is the same idea: multiply \(g \) by itself taking the remainder at each stage, until the target \(t \) is found. Now, the discrete logarithm does not always exist: so if in the process you reach a product of 1, then one should abort. (It can be shown that this is mathematically valid.)

Create a MATLAB program called \texttt{expoLog.m} that

(a) asks the user whether they want a exponentiation or a logarithm,
(b) prompts for the three parameters, and
(c) then does the calculation, printing out the intermediate values.

Sample runs:

```matlab
>> expoLog
Expo=1 Log=2 1
g is 2
e is 4
n is 11
2,4,8,5,
answer is 5
```

```matlab
>> expoLog
Expo=1 Log=2 2
g is 2
t is 5
n is 11
2,4,8,5,
Log is 4
```

```matlab
>> expoLog
Expo=1 Log=2 2
g is 3
t is 7
n is 11
3,9,5,4,1,
No Log
```