(a) List the three row operations.

interchange two rows; scale a row; add multiple of one row to another row

(b) What’s the maximum number of nonzero entries in a 3×3 matrix in reduced row echelon form?

Four. In the case that there are pivots in first two columns only.

(c) In \mathbb{R}^2, give a set of three vectors that:

- (a) span \mathbb{R}^2

 E.g. $(1, 0), (0, 1)$ and any other vector

- (b) don’t span \mathbb{R}^2

 E.g. $(1, 0), (2, 0), (3, 0)$

- (c) are linearly independent

 Do not exist

- (d) are not linearly independent

 Any three
(d) Assume T is a linear transformation with $T((1,0)) = (3,2)$ and $T((1,1)) = (-1,4)$. What is the associated matrix transformation?

The columns of the matrix are the images of $(1,0)$ and $(0,1)$. Note that $T(0,1) = T(1,1) - T(1,0)$. So matrix is $\begin{bmatrix} 3 & -4 \\ 2 & 2 \end{bmatrix}$.

(e) If A is 2×2, B is 2×5, and C is 5×1, which of the following products are defined? A^3, BC, CB, BA^T

A^3 and BC are defined

(f) Give in each case a 2×2 matrix that is:

(a) equal to its transpose

E.g. The identity or the all-zero matrix

(b) equal to its inverse

E.g. The identity

(c) lower triangular but not invertible

E.g. The all-zero matrix