1. Consider question 4 of previous assignment. For the cases where the set is a subspace, give the dimension and a basis.

2. Give example(s) that shows that the intersection of two d-dimensional spaces can have dimension anywhere from 0 to d.

3. Consider the following triplets of vectors in \mathbb{R}^3. In each case state whether the triplet is a basis, spans \mathbb{R}^3 and/or is linearly independent.

 (a) $(0, 0, 0), (1, 1, 1), (2, 2, 2)$
 (b) $(1, 1, 1), (1, 1, 0), (1, 0, 0)$
 (c) $(0, 1, 2), (2, 0, 1), (1, 2, 0)$

4. Consider the matrix

 \[
 G = \begin{bmatrix}
 1 & 2 & 0 & -3 \\
 2 & 7 & 1 & 7 \\
 -2 & -1 & 1 & 19
 \end{bmatrix}
 \]

 (a) Give the dimension and a basis of the column space of G.
 (b) Give the dimension and a basis of the null space of G.
 (c) Give the dimension and a basis of the row space of G.

5. Say S and T are 9×9 matrices of rank 5. Consider the matrix product ST.

 (a) Give an example of a 9×9 matrix of rank 5.
 (b) Prove that the product ST always has rank at most 5. (Hint: the columns of ST are linear combinations.)
 (c) Prove that the product ST is never zero. (Hint: null spaces and column spaces)

Due: Start of class, Friday 19 October