[Assignment 7]

(If you prefer, you may work in a pair and submit one solution for the pair.)

1. Prove that a linear transform always maps \(\mathbf{0} \) to \(\mathbf{0} \).

2. Consider Exercise 3 of the previous assignment. For the cases where the set is a vector space, give the dimension and a basis.

3. Suppose that \(S = \{ \mathbf{x}, \mathbf{y}, \mathbf{z} \} \) is a linearly dependent set. Prove that every vector \(\mathbf{v} \) in the span of the set \(S \) can be expressed as a linear combination in more than one way.

4. Let \(L \) be the set of all linear transforms from \(\mathbb{R}^3 \) to \(\mathbb{R}^2 \).
 (a) Verify that \(L \) is a vector space.
 (b) Determine the dimension of \(L \) and give a basis for \(L \).

5. Consider the matrix
 \[
 F = \begin{bmatrix}
 2 & -1 & 0 & -3 \\
 12 & -6 & 1 & 7 \\
 0 & 0 & 0 & 0
 \end{bmatrix}
 \]
 (a) Give the dimension and a basis of the column space of \(F \).
 (b) Give the dimension and a basis of the null space of \(F \).
 (c) Give the dimension and a basis of the row space of \(F \).

Due: Friday Nov 1