1. Calculate the determinants of the following matrices using cofactors.

\[D = \begin{bmatrix} 1 & -1 & 3 \\ 3 & 4 & 1 \\ 0 & 2 & -1 \end{bmatrix} \quad L = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 2 & 0 \\ 4 & 1 & 5 \end{bmatrix} \]

2. Calculate the determinants of the matrices in the previous question using row reduction.

3. A **permutation matrix** is an \(n \times n \) matrix with 0's everywhere except for exactly one 1 in every row and column. (For example the identity matrix is a permutation matrix.)

 (a) Show that every permutation matrix has determinant 1 or \(-1\).

 (b) Show that the transpose of a permutation matrix is its inverse.

 (c) Show that the product of two permutation matrices is a permutation matrix.

4. Suppose \(A \) is a \(3 \times 3 \) matrix such that \(\det A = 3 \). Give the determinant of:

 (a) \(A^T \)

 (b) \((A^2)^{-1}\)

 (c) The matrix that results if one takes \(A \) and **replaces** the 2nd row by the sum of the 1st and 3rd rows.

 (d) The matrix that results if one takes \(A \) and **increases** the 2nd row by the sum of the 1st and 3rd rows.

 (e) \(A + A \).

 (f) \(A + A^T \).

5. (a) Prove that if two rows of a matrix are identical then its determinant is 0.

 (b) Assume \(A \) is a square matrix with first row \(R \). Let \(B \) be the square matrix obtained from \(A \) by replacing the first row by \(S \). Let \(C \) be the square matrix obtained from \(A \) by replacing the first row by \(R + S \). Prove that \(\det A + \det B = \det C \).

 (c) Use the above results to prove that the “replacement” elementary row operation does not change the determinant.

Due: Mon October 7