Minors and Well-quasi-orderings

1 The Trees are Well-quasi-ordered by Topological Minor

A quasi-ordering is a reflexive transitive relation. A set X is well-quasi-ordered by \leq if given any infinite subsequence $\{x_k\}$ of X there are two elements x_i and x_j with $i < j$ and $x_i \leq x_j$.

Lemma 1 A set is WQO iff it contains neither an infinite antichain (no two elements comparable) nor an infinite strictly decreasing sequence.

Proof is left as an exercise.

For two subsets A and B of X, we define $A \leq B$ if there is a 1–1 mapping f from A to B such that $a \leq f(a)$ for all $a \in A$.

Lemma 2 If X is WQO by \leq, then so is the set of finite subsets of X.

Proof omitted.

We say that graph G is a topological minor of H is H contains a subgraph that is a subdivision of G. People also say that G is a homeomorphic subgraph of H.

Theorem 3 (Kruskal) The finite trees are WQO by the topological minor relation.

That is, given any infinite sequence of trees, there is $i < j$ such that tree T_j contains a subdivision of tree T_i as a subgraph.

Proof. Consider rooted trees. Suppose the result is false. That is, we can find an infinite sequence of rooted trees such that none is a topological minor of a later one. Choose such a sequence one tree at a time by letting the tree T_n be a minimum-order rooted tree such that there is still an infinite bad sequence starting T_1, \ldots, T_n.

Let C_n be the multiset of child subtrees of tree T_n. Let A be the union of the C_n. We show that A is WQO. For consider any infinite sequence B_1, B_2, \ldots of A. Find the smallest j such that there is a $B_i \in C_j$. And consider the sequence $T_1, T_2, \ldots, T_{j-1}, B_i, B_{i+1}, \ldots$.

By the choice of the sequence $\{T_n\}$, and that B_i is part of T_j, it follows that the new sequence is not bad. So there are two trees in it, with one a topological minor of the later. These two trees cannot both be in the $T_1 \ldots T_{j-1}$ portion, because the original sequence is bad. Nor in fact can the first tree be from that portion,
because being a topological minor of B_k implies it is a topological minor of the tree that B_k is a child in. So the two trees are in the B_i portion, as required. That is, A is WQO.

It follows from earlier lemma that the finite subsets of A are also WQO by topological minor. In particular, we can always find i and j so that the multiset C_i of child-trees of T_i is \leq the multiset C_j of child-trees of T_j. That is, one can match each tree of C_i with a tree of C_j such that the first is a topological minor of the second. It follows that T_i is a topological minor of T_j. Which is a contradiction. QED

2 The Minor Theorems

Theorem 4 (Robertson & Seymour) The finite graphs are WQO by the minor relation.

Corollary 5 Every graph property closed under minors has a characterization by a finite list of forbidden minors.

In particular, for every surface there is a finite list of forbidden minors. Actually, they proved this consequence as a stepping stone to the overall theorem.

There is an $O(n^3)$ algorithm to test for existence of fixed minor.

For example, a linkless embedding of a graph is an embedding of the graph in 3 dimensions such that there are no two interlocking cycles. Having a linkless embedding is clearly closed under taking minors. So before the problem was not known to be decidable; now it is known to be in P.

But note that the algorithms have huge hidden constants, and are nonconstructive in parts.