1. Determine whether the following sets are countable or uncountable. Justify your answers.

 (a) The set of all three-element subsets of \(\mathbb{N} \).

 (b) The set of all infinite subsets of \(\mathbb{N} \).

 (c) The set of all regular languages with alphabet \(\{0, 1\} \).

2. Define a **tedious** state of a TM as a state \(s \) such that there exists a string on which the
 TM enters \(s \) infinitely often. Show that it is undecidable to determine whether a state \(s \)
 in a TM is tedious.

3. Show that the following question is undecidable:
 whether the language of an LBA is empty.

4. If \(A \) reduces to \(B \) and \(B \) is a regular language, what can one conclude about \(A \)? Justify
 your answer.

5. Determine whether each of the following is True or False. Justify your answer.

 (a) Every infinite set is countable.

 (b) If \(N \) is the set \(\{ \langle G \rangle : G \text{ is CFG that does NOT generate all strings } \} \), then \(N \) is
 r.e.

 (c) It is undecidable to determine whether an NFA accepts its own encoding.

 (d) If a language \(L \) is context-sensitive, then there is a Printer-TM that prints out \(L \)
 in order.

Due: START OF CLASS, Thursday November 12